Many factors are involved in determining the latitudinal and altitudinal spread of the important tick vector Ixodes ricinus (Acari: Ixodidae) in Europe, as well as in changes in the distribution within its prior endemic zones. This paper builds on published literature and unpublished expert opinion from the VBORNET network with the aim of reviewing the evidence for these changes in Europe and discusses the many climatic, ecological, landscape and anthropogenic drivers. These can be divided into those directly related to climatic change, contributing to an expansion in the tick’s geographic range at extremes of altitude in central Europe, and at extremes of latitude in Scandinavia; those related to changes in the distribution of tick hosts, particularly roe deer and other cervids; other ecological changes such as habitat connectivity and changes in land management; and finally, anthropogenically induced changes. These factors are strongly interlinked and often not well quantified. Although a change in climate plays an important role in certain geographic regions, for much of Europe it is non-climatic factors that are becoming increasingly important. How we manage habitats on a landscape scale, and the changes in the distribution and abundance of tick hosts are important considerations during our assessment and management of the public health risks associated with ticks and tick-borne disease issues in 21st century Europe. Better understanding and mapping of the spread of I. ricinus (and changes in its abundance) is, however, essential to assess the risk of the spread of infections transmitted by this vector species. Enhanced tick surveillance with harmonized approaches for comparison of data enabling the follow-up of trends at EU level will improve the messages on risk related to tick-borne diseases to policy makers, other stake holders and to the general public.
There has been growing interest in Europe in recent years in the establishment and spread of invasive mosquitoes, notably the incursion of Aedes albopictus through the international trade in used tires and lucky bamboo, with onward spread within Europe through ground transport. More recently, five other non-European aedine mosquito species have been found in Europe, and in some cases populations have established locally and are spreading. Concerns have been raised about the involvement of these mosquito species in transmission cycles of pathogens of public health importance, and these concerns were borne out following the outbreak of chikungunya fever in Italy in 2007, and subsequent autochthonous cases of dengue fever in France and Croatia in 2010. This article reviews current understanding of all exotic (five introduced invasive and one intercepted) aedine species in Europe, highlighting the known import pathways, biotic and abiotic constraints for establishment, control strategies, and public health significance, and encourages Europe-wide surveillance for invasive mosquitoes.
Among the invasive mosquitoes registered all over the world, Aedes species are particularly frequent and important. As several of them are potential vectors of disease, they present significant health concerns for 21st century Europe. Five species have established in mainland Europe, with two (Aedes albopictus and Aedes japonicus) becoming widespread and two (Ae. albopictus and Aedes aegypti) implicated in disease transmission to humans in Europe. The routes of importation and spread are often enigmatic, the ability to adapt to local environments and climates are rapid, and the biting nuisance and vector potential are both an ecomonic and public health concern. Europeans are used to cases of dengue and chikungunya in travellers returning from the tropics, but the threat to health and tourism in mainland Europe is substantive. Coupled to that are the emerging issues in the European overseas territorities and this paper is the first to consider the impacts in the remoter outposts of Europe. If entomologists and public health authorities are to address the spread of these mosquitoes and mitigate their health risks they must first be prepared to share information to better understand their biology and ecology, and share data on their distribution and control successes. This paper focusses in greater detail on the entomological and ecological aspects of these mosquitoes to assist with the risk assessment process, bringing together a large amount of information gathered through the ECDC VBORNET project.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.