MyShake is a global seismic platform that uses private citizens' smartphones to detect earthquakes and record both ground shaking and users' experiences. The goal is to reduce earthquake risk and provide users with a resource for earthquake science and information. It is powered by the participation of users, therefore, its success as a global network and its utility for the users themselves is reliant on their engagement and continued involvement. This paper discusses the citizen scientist participation that enables MyShake, with specific attention to the human-centered design process that was used to overhaul the mobile application's user interface. After the successful initial launch of the application in February of 2016, we had the opportunity to revisit the user interface based on user feedback and needs. The process began with an assessment of the user and geographic distribution of the original user base through surveys and Google Play Store analytics. Subsequently, through systematic examination of the motivations and needs of community members in the San Francisco Bay Area and iterative evaluations of design decisions, MyShake was redesigned to appeal as a resource to a wider range of users in earthquake-prone regions. The new user interface was then evaluated through interviews, surveys, and meetups with potential users. We highlight the human-centered methodology we employed, as well as the roadblocks we faced, in the hopes that our experience will be valuable to other citizen science projects in the future.
Introduction: Clinical trials provide the "gold standard" evidence for advancing the practice of medicine, even as they evolve to integrate real-world data sources. Modern clinical trials are increasingly incorporating real-world data sourcesdata not intended for research and often collected in free-living contexts. We refer to trials that incorporate real-world data sources as real-world trials. Such trials may have the potential to enhance the generalizability of findings, facilitate pragmatic study designs, and evaluate real-world effectiveness. However, key differences in the design, conduct, and implementation of real-world vs traditional trials have ramifications in data management that can threaten their desired rigor. Methods: Three examples of real-world trials that leverage different types of data sourceswearables, medical devices, and electronic health records are described. Key insights applicable to all three trials in their relationship to Data and Safety Monitoring Boards (DSMBs) are derived. Results: Insight and recommendations are given on four topic areas: A. Charge of the DSMB; B. Composition of the DSMB; C. Pre-launch Activities; and D. Post-launch Activities. We recommend stronger and additional focus on data integrity. Conclusions: Clinical trials can benefit from incorporating real-world data sources, potentially increasing the generalizability of findings and overall trial scale and efficiency. The data, however, present a level of informatic complexity that relies heavily on a robust data science infrastructure. The nature of monitoring the data and safety must evolve to adapt to new trial scenarios to protect the rigor of clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.