Image inhomogeneity often occurs in real-world images and may present considerable difficulties during image segmentation. Therefore, this paper presents a new approach for the segmentation of inhomogeneous images. The proposed hybrid active contour model is formulated by combining the statistical information of both the local and global region-based energy fitting models. The inclusion of the local region-based energy fitting model assists in extracting the inhomogeneous intensity regions, whereas the curve evolution over the homogeneous regions is accelerated by including the global region-based model in the proposed method. Both the local and global region-based energy functions in the proposed model drag contours toward the accurate object boundaries with precision. Each of the local and global region-based parts are parameterized with weight coefficients, based on image complexity, to modulate two parts. The proposed hybrid model is strongly capable of detecting region of interests (ROIs) in the presence of complex object boundaries and noise, as its local region-based part comprises bias field. Moreover, the proposed method includes a new bias field (NBF) initialization and eliminates the dependence over the initial contour position. Experimental results on synthetic and real-world images, produced by the proposed model, and comparative analysis with previous state-of-the-art methods confirm its superior performance in terms of both time efficiency and segmentation accuracy. INDEX TERMS Active contours, bias field, image segmentation, intensity inhomogeneity, level set.
The most fatal and frequent cancer amongst women is breast cancer. Mammography provides timely detection of lumps and masses in breast tissue, but effective diagnosis requires accurately identifying malignant tumor boundaries, which remains challenging, particularly for images with inhomogeneous regions. Therefore, we propose an active contour method based on a reformed combined local and global fitted function to address breast tumor segmentation. This combined function is strengthened by a proposed average energy driving function to capture obscure boundaries for regions of interest more precisely from inhomogeneous images. Including a p-Laplace term eliminates reinitialization requirements and suppresses false contours in the segmentation. Bias field signal, which causes image homogeneity corruption, is estimated by bias field initialization to ensure independence from the initial contour position. Local and global fitted models are incorporated by introducing bias fields within them. The proposed method was tested on the MIAS MiniMammographic Database, with quantitative analysis to calculate its accuracy, effectiveness, and efficiency. Experimentation confirmed the proposed method provided superior results compared with previous state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.