The design of porous materials that undergo selective adsorption of a specific molecule is a critical issue in research on porous coordination polymers or metal-organic frameworks. For the purpose of the selective capture of molecules possessing an electron-acceptor character such as nitric oxide (NO), one-dimensional chain compounds possessing a high donor character have been synthesized using 4-chloroanisate-bridged paddlewheel-type dimetal(II, II) complexes with M = Ru and Rh and phenazine (phz) as the chain linker: [M2(4-Cl-2-OMePhCO2)4(phz)]·n(CH2Cl2) (M = Ru, 1; Rh, 2). These compounds are isostructural and are composed of chains with a [-{M2}-phz-] repeating unit and CH2Cl2 occupying the void space between the chains. Compounds 1 and 2 change to a new phase (1-dry and 2-dry) upon evacuating the crystallization solvent (CH2Cl2) and almost lose their pores in the drying process: no void space in 1-dry and 31.8 Å(3), corresponding to 2.9% of the cell volume, in 2-dry. Nevertheless, the compounds show a unique gas accommodation ability. Accompanied by a structural transformation (i.e., the first gate-opening) at low pressures of <10 kPa, both compounds show a typical physisorption isotherm for O2 (90 K) and CO2 (195 K), with the adsorption amount of ca. 2-4 gas molecules per [M2] unit. In addition, the adsorption isotherm for NO (121 K) involves the first gate-opening followed by a second gate-opening anomaly at NO pressures of ≈52 kPa for 1-dry and ≈21 kPa for 2-dry. At the first gate-opening, the absorbed amount of NO is ca. 4 molecules per [M2] unit, and then it reaches 8.4 and 6.3 for 1-dry and 2-dry, respectively, at 95 kPa. Only the isotherm for NO exhibits hysteresis in the desorption process, and some of the NO molecules are trapped in pores even after evacuating at 121 K, although it recovers to the original dried sample on heating to room temperature. The adsorbed NO molecules accrue a significant electron donation from the host framework even in the [Rh2] derivative, indicating that such simple porous compounds with electron-donor characteristics are useful for the selective adsorption of NO.
The gate-opening adsorption behavior of the one-dimensional chain compound [Ru2(4-Cl-2-OMePhCO2)4(phz)] (1; 4-Cl-2-OMePhCO2(-) = 4-chloro-o-anisate; phz = phenazine) for various gases (O2, NO, and CO2) was electronically monitored in situ by applying ac electric fields to pelletized samples attached to a cryostat, which was used to accurately control the temperature and gas pressure. The gate-opening and -closing transitions induced by gas adsorption/desorption, respectively, were accurately monitored by a sudden change in the real part of permittivity (ε'). The transition temperature (TGO) was also found to be dependent on the applied temperature and gas pressure according to the Clausius-Clapeyron equation. This behavior was also observed in the isostructural compound [Rh2(4-Cl-2-OMePhCO2)4(phz)] (2), which exhibited similar gate-opening adsorption properties, but was not detected in the nonporous gate-inactive compound [Ru2(o-OMePhCO2)4(phz)] (3). Furthermore, the imaginary part of permittivity (ε″) effectively captured the electronic perturbations of the samples induced by the introduced guest molecules. Only the introduction of NO resulted in the increase of the sample's electronic conductivity for 1 and 3, but not for 2. This behavior indicates that electronic host-guest interactions were present, albeit very weak, at the surface of sample 1 and 3, i.e., through grain boundaries of the sample, which resulted in perturbation of the conduction band of this material's framework. This technique involving the in situ application of ac electric fields is useful not only for rapidly monitoring gas sorption responses accompanied by gate-opening/-closing structural transitions but also potentially for the development of molecular framework materials as chemically driven electronic devices.
A porous one-dimensional coordination chain compound, [Ru(2)(p-F-PhCO(2))(4)(phz)] (; p-F-PhCO(2)(-) = para-fluorobenzoate; phz = phenazine) derived by drying its nitrobenzene-solvated compound, specifically adsorbs CO(2) at 195 K in a stepwise sorption manner.
Electrical magnetism control is realized in a Li-ion battery system through a redox reaction involving ion migrations; “magneto-ionic control”. A quasi-layered metal–organic framework compound with a cross-linked π-conjugated/unconjugated one-dimensional chain motifs composed of electron-donor/acceptor units is developed as the cathode material. A change in magnetic phase from paramagnetic to ferrimagnetic is demonstrated by means of electron-filling control for the acceptor units via insertion of Li+-ions into pores in the material. The transition temperature is as high as that expected for highly π-conjugated layered systems, indicating an extension of π-conjugated exchange paths by rearranging coordination bonds in the first discharge process.
A change of building block from [Ru2II,II(p-FPhCO2)4] to [Ru2II,II(4-F-2-OMePhCO2)4] in a phenazine (phz)-bridged [Ru2II,II] chain compound led to a high selectivity toward nitrogen monoxide (NO) in the adsorption characteristics. High selectivity was observed despite the fact that electronically negative sites that enable close contact with NO molecules are not present in the pores, in contrast to [Ru2II,II(4-Cl-2-OMePhCO2)4(phz)], which also exhibited selective NO adsorption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.