Filler injection demand is increasing worldwide, but no ideal filler with safety and longevity currently exists. Sodium alginate (SA) is the sodium salt of alginic acid, which is a polymeric polysaccharide obtained by linear polymerization of two types of uronic acid, d-mannuronic acid (M) and l-guluronic acid (G). This study aimed to evaluate the therapeutic value of SA. Nine SA types with different M/G ratios and viscosities were tested and compared with a commercially available sodium hyaluronate (SH) filler. Three injection modes (onto the periosteum, intradermally, or subcutaneously) were used in six rats for each substance, and the animals were sacrificed at 4 or 24 weeks. Changes in the diameter and volume were measured macroscopically and by computed tomography, and histopathological evaluations were performed. SA with a low M/G ratio generally maintained skin uplift. The bulge gradually decreased over time but slightly increased at 4 weeks in some samples. No capsule formation was observed around SA. However, granulomatous reactions, including macrophage recruitment, were observed 4 weeks after SA implantation, although fewer macrophages and granulomatous reactions were observed at 24 weeks. The long-term volumizing effects and degree of granulomatous reactions differed depending on the M/G ratio and viscosity. By contrast, SH showed capsule formation but with minimal granulomatous reactions. The beneficial and adverse effects of SA as a filler differed according to the viscosity or M/G ratio, suggesting a better long-term volumizing effect than SH with relatively low immunogenicity
To reduce the availability of soil cadmium (Cd) to soybeans (Glycine max (L.) Merr.), we employed a liming by partial mixing (PM) technique in two drained paddy fields on Gray Lowland soils, which had 0.1 mol L -1 hydrochloric acid-extractable Cd concentrations as high as 1.08 and 1.40 mg kg -1 . Among the different application methods tested, PM application (PM2) using a width of 20 cm and a depth of 20 cm was found to be most appropriate for reducing the seed Cd concentration and to obtain the optimum yield at Site A. Under PM2, a liming rate of 38% of that for broadcast incorporated into the surface 15 cm layer (Bc) was suitable to reduce the seed Cd concentration at Site A, whereas the lime rate with PM2 was set at 50% of that for Bc (PM2-50) at Site B due to the higher availability of soil Cd. The root system was limited within the range of lime and fertilizer application for PM2 as well as PM2-50; thus, the lime and fertilizer were supplied successfully to the rooting zone. The soil pH value was lower under PM2 at Site A and PM2-50 at Site B compared with Bc, whereas the seed Cd concentration was lower for PM2 and PM2-50. This may be explained by the intensive uptake of calcium and magnesium with PM2 as well as PM2-50. The seed Cd concentration in the cultivar "Ryuhou" at the target pH of 6.5 was approximately 30% lower with PM2-50 than Bc at Site B. In addition, the average seed Cd concentrations in one cultivar and two lines, characterized by the lower Cd uptake with higher retention in roots and higher accumulation in leaves, were approximately 40% lower compared with "Ryuhou." Thus, the combination of liming with PM2-50 at the target pH of 6.5 and a low-Cd cultivar (or lines) minimized the seed Cd concentration. The highest seed Cd concentration was found in the first year of soybean cultivation, which was considered to be caused by the release of Cd from organic nitrogen compounds during the nitrogen mineralization process. ARTICLE HISTORY
Background: Cotransplantation of adipose-derived stem cells (ASCs) and endothelial progenitor cells has shown superior angiogenic effects compared with ASCs alone in recent animal studies. However, endothelial progenitor cells could only be collected from blood vessels or bone marrow. Thus, the authors have established a method for purifying adipose-derived endothelial progenitor cells (AEPCs). The authors hypothesized that AEPCs would enhance the therapeutic effect of ASCs on radiation ulcers. Methods: Seven-week-old male nude mice (BALB/cAJcl-nu/nu) were irradiated on the dorsal skin (total 40 Gy); 12 weeks later, 6-mm-diameter wounds were created. The mice were then treated with subcutaneous injection of human ASCs [1 × 10 5 (n = 4)], human AEPCs [2 × 10 5 or 5 × 10 5 (n = 5)], combinations of those [ASCs 1 × 10 5 plus AEPCs 2 × 10 5 (n = 4) or 5 × 10 5 (n = 5)], or only vehicle (n = 7). The nonirradiated group was also prepared as a control (n = 6). The days required for macroscopic epithelialization was compared, and immunostaining for human-derived cells and vascular endothelial cells was performed at day 28. Results: AEPC-ASC combination-treated groups healed faster than the ASCtreated group (14 ± 0 days versus 17 ± 2 days; P < 0.01). Engraftment of the injected cells could not be confirmed. Only the nonirradiated mice had significantly higher vascular density (0.988 ± 0.183 × 10 −5 /µm −2 versus 0.474 ± 0.092 × 10 −5 /µm 2 ; P = 0.02). Conclusion:The results suggested therapeutic potentials of AEPCs and an enhanced effect of combination with ASCs. This study is a xenogenic transplantation model, and further validation in an autologous transplantation model is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.