Cite this article as: Kayode Adesina Adegoke and Olugbenga Solomon Bello, Dye sequestration using agricultural wastes as adsorbents, Water Resources and Industry, http://dx.
AbstractColour is a visible pollutant and the presence of even minute amount of coloring substance makes it undesirable due to its appearance. The removal of color from dye-bearing effluents is a major problem due to the difficulty in treating such wastewaters by conventional treatment methods. The most commonly used methods for color removal are biological oxidation and chemical precipitation. However, these processes are effective and economic only in the case where the solute concentrations are relatively high. Most industries use dyes and pigments to color their products. The presence of dyes in effluents is a major concern due to its adverse effect on various forms of life. The discharge of dyes in the environment is a matter of concern for both toxicological and esthetical reasons. It is evident from a literature survey of about 305 recently published papers that low-cost adsorbents have demonstrated outstanding removal capabilities for dye removal and the optimal equilibrium time of various dyes with different charcoal adsorbents from agricultural residues is between 4 and 5 hrs. Maximum adsorptions of acidic dyes were obtained from the solutions with pH 8-10. The challenges and future prospects are discussed to provide a better framework for a safer and cleaner environment.
The presence of organic dyes in the aquatic environment is a serious global problem because of the serious negative consequences on the quality of ecosystems. Among various physico-chemical methods, the adsorption could be considered a promising alternative for removing dyes from aqueous media, due to its efficiency, high selectivity, low cost, ease of operation, simplicity, and availability in a wide range of experimental conditions. However, all these advantages are closely related to the nature of adsorbent material used in the adsorption processes of dyes. The adsorbent materials available in large quantities requiring a simple preparation will enhance the benefits of the adsorption processes, in agreement with the concepts of green chemistry. This review is focused on the use of leaf-based materials, in raw or modified forms, as adsorbents for the removal of dyes from aqueous effluents, with applications in the wastewater treatment. This review addresses characterization of leaf-based adsorbents, possible utilization of leaf-based adsorbents (raw and activated forms) for dye removal and possible applications in pilot and full scale systems. Also, thermodynamics, equilibrium and kinetic parameters of dye adsorption on leaf-based adsorbents are discussed. The practical utility of leaf-based adsorbents for dye removal, and their possible uses in the treatment of industrial wastewater are copiously highlighted.
Activated carbon prepared from
locust bean
husk was modified using ortho-phosphoric acid (ALBP) and used to scavenge Rhodamine B (RhB) dye from aqueous solutions. Characteristic features of the adsorbents were investigated using SEM, FTIR, pH
pzc
and Boehm Titration (BT) techniques respectively. Batch studies were used to determine the influences of contact time, temperature and initial Rh–B dye concentrations. Adsorption data were analysed using four different isotherm models. The maximum monolayer adsorption capacity of 1111.1 mgg
-1
was obtained for RhB dye adsorption. The kinetics of the adsorption process was studied using pseudo-first-order, pseudo-second-order Elovich and intraparticle diffusion models respectively. The experimental data was best described by pseudo-second-order kinetic model. Favourability of the process of adsorption was also established by the separator factor (R
L
) value ranging from 0 and 1, while the mean energy of adsorption (E
a
) was 1.12 kJmol
-1
suggesting that the removal of Rh–B dye from aqueous solution followed a physisorption process. For the thermodynamic investigations, the positive values of ΔS (280.956 Jmol
−1
K
−1
) indicates the affinity of adsorbent for the Rh–B dye uptake and increase randomness at the solid–solution interface during adsorption of Rh–B dye onto the surface of the active sites of ALBP. The negative value of ΔG (-31.892 to -26.355 kJmol
-1
) depicts the spontaneity and feasibility of the adsorption process. The cost analysis provides a simple proof that ALBP (42.52 USD per kg) is approximately six times cheaper than Commercial Activated Carbon, CAC (259.5 USD per kg). The present study therefore established the suitability of ALBP for effective removal of Rh–B dye from aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.