As the popularity of the internet computer continued to grow and become an indispensable in human life, the security of computer network has become an important issue in computer security field. The Intrusion Detection System (IDS) is a system used in computer security for network security. The feature selection stage of IDS is considered to be the most critical stage in IDS. This stage is very costly both in efforts and time. However, many machine learning approaches have been presented to improve this stage in order to improve the performance of an IDS. However, these approaches did not give desirable results with respect to the detection accuracy in the IDS. A novel technique is proposed in this paper combining the Information Gain and Ranker (IG+R) method as the feature selection strategy with Naïve Bayes (NB), Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) as the classifiers. The performance of these IG+R-NB, IG+R-SVM, and IG+R-KNN was evaluated on NSLKDD dataset. The experimental results of our proposed method gave high accuracy and low false alarm rate. The results obtained was compared and benchmarked with existing works. The results of this paper outperformed the existing approaches in terms of the detection accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.