Schnurri-2 (Shn-2), an nuclear factor-κB site-binding protein, tightly binds to the enhancers of major histocompatibility complex class I genes and inflammatory cytokines, which have been shown to harbor common variant single-nucleotide polymorphisms associated with schizophrenia. Although genes related to immunity are implicated in schizophrenia, there has been no study showing that their mutation or knockout (KO) results in schizophrenia. Here, we show that Shn-2 KO mice have behavioral abnormalities that resemble those of schizophrenics. The mutant brain demonstrated multiple schizophrenia-related phenotypes, including transcriptome/proteome changes similar to those of postmortem schizophrenia patients, decreased parvalbumin and GAD67 levels, increased theta power on electroencephalograms, and a thinner cortex. Dentate gyrus granule cells failed to mature in mutants, a previously proposed endophenotype of schizophrenia. Shn-2 KO mice also exhibited mild chronic inflammation of the brain, as evidenced by increased inflammation markers (including GFAP and NADH/NADPH oxidase p22 phox), and genome-wide gene expression patterns similar to various inflammatory conditions. Chronic administration of anti-inflammatory drugs reduced hippocampal GFAP expression, and reversed deficits in working memory and nest-building behaviors in Shn-2 KO mice. These results suggest that genetically induced changes in immune system can be a predisposing factor in schizophrenia.
Background: L-Serine deficiency affects sphingolipid homeostasis. Results: Reduced L-serine promotes the accumulation of 1-deoxysphingolipids and the formation of lipid bodies. Conclusion: Diminished capacity for L-serine synthesis leads to a higher L-alanine to L-serine ratio and elicits the synthesis of 1-deoxysphingolipids and lipid body formation. Significance: 1-Deoxysphingolipids occur in certain disease conditions characterized by a metabolic imbalance between L-alanine and L-serine.
In mammalian brain, D-serine is synthesized from L-serine by serine racemase, and it functions as an obligatory coagonist at the glycine modulatory site of N-methyl-D-aspartate (NMDA)-selective glutamate receptors. Although diminution in D-serine level has been implicated in NMDA receptor hypofunction, which is thought to occur in schizophrenia, the source of the precursor L-serine and its role in D-serine metabolism in adult brain have yet to be determined. We investigated whether L-serine synthesized in brain via the phosphorylated pathway is essential for Dserine synthesis by generating mice with a conditional deletion of D-3-phosphoglycerate dehydrogenase (Phgdh; EC 1.1.1.95). This enzyme catalyzes the first step in L-serine synthesis via the phosphorylated pathway. HPLC analysis of serine enantiomers demonstrated that both L-and D-serine levels were markedly decreased in the cerebral cortex and hippocampus of conditional knock-out mice, whereas the serine deficiency did not alter protein expression levels of serine racemase and NMDA receptor subunits in these regions. The present study provides definitive proof that Lserine-synthesized endogenously via the phosphorylated pathway is a key rate-limiting factor for maintaining steadystate levels of D-serine in adult brain. Furthermore, NMDAevoked transcription of Arc, an immediate early gene, was diminished in the hippocampus of conditional knock-out mice. Thus, this study demonstrates that in mature neuronal circuits L-serine availability determines the rate of Dserine synthesis in the forebrain and controls NMDA receptor function at least in the hippocampus.Glutamate is the principal excitatory neurotransmitter in mammalian brain, acting on ionotropic and metabotropic glutamate receptors. Ionotropic glutamate receptors can be divided into three classes based on their preference for the ligands N-methyl-D-aspartate (NMDA), 3 ␣-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid, and kainate. Among these receptors, NMDA receptors have been implicated in synapse refinement, synaptic plasticity, and learning/memory as well as brain pathologies including excitotoxicity and psychiatric diseases (for review, see Refs. 1-3). Two NMDA receptor subunits, NR1 and NR2, form tetramers that comprise the functional receptors. For the NMDA receptor to function as a ligand-gated ion channel, a co-agonist must occupy the glycine modulatory site on NR1 coincident with glutamate binding to the transmitter recognition site on NR2 (4 -6).D-Serine occurs naturally in the adult brain of higher vertebrates and is particularly enriched in forebrain regions (7). This D-amino acid acts as an endogenous co-agonist at the glycine modulatory site of NMDA receptors (for review, see Refs. 8 -11). In the telencephalon, where D-serine is abundant (12), its distribution pattern resembles that of NR2A/B subunits (13). In contrast, immunoreactivity for free glycine is very low in telencephalon and is detected primarily in the hindbrain and hypothalamus, where NR2A/B expression is weaker than in ...
d-serine is a physiologic coagonist of NMDA receptors, but little is known about the regulation of its synthesis and synaptic turnover. The amino acid exchangers ASCT1 (Slc1a4) and ASCT2 (Slc1a5) are candidates for regulating d-serine levels. Using ASCT1 and ASCT2 KO mice, we report that ASCT1, rather than ASCT2, is a physiologic regulator of d-serine metabolism. ASCT1 is a major d-serine uptake system in astrocytes and can also export l-serine via heteroexchange, supplying neurons with the substrate for d-serine synthesis. ASCT1-KO mice display lower levels of brain d-serine along with higher levels of l-alanine, l-threonine, and glycine. Deletion of ASCT1 was associated with neurodevelopmental alterations including lower hippocampal and striatal volumes and changes in the expression of neurodevelopmental-relevant genes. Furthermore, ASCT1-KO mice exhibited deficits in motor function, spatial learning, and affective behavior, along with changes in the relative contributions of d-serine vs. glycine in mediating NMDA receptor activity. In vivo microdialysis demonstrated lower levels of extracellular d-serine in ASCT1-KO mice, confirming altered d-serine metabolism. These alterations are reminiscent of some of the neurodevelopmental phenotypes exhibited by patients with ASCT1 mutations. ASCT1-KO mice provide a useful model for potential therapeutic interventions aimed at correcting the metabolic impairments in patients with ASCT1 mutations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.