The bioavailability of therapeutic agents can be improved by using prodrugs which have better passive diffusion than the active agents. Intestinal hydrolysis is an important reaction in the bioconversion of prodrugs, and may be the rate-limiting factor in their absorption. Carboxylesterase (CES) is ubiquitous in most organs and is located in the endoplasmic reticulum. Single-pass perfusion experiments in rat intestine have shown that CES is the main enzyme involved in intestinal first-pass hydrolysis. In man, intestinal CESs belong to the CES2 gene family and their activity is nearly constant along the jejunum and ileum. The predominant human intestinal CES, hCE2, preferentially hydrolyzes prodrugs in which the alcohol group of a pharmacologically active molecule has been modified by the addition of a small acyl group. In preclinical animal models, CES2 isozymes are also the major intestinal enzymes although they have different substrate specificities to human CES2, while CES1 isozymes and other unidentified enzymes are also present. It is therefore difficult to predict human intestinal absorption from animal experiments. Caco-2 cells mainly express the human CES1 isozyme, hCE1, which shows quite different substrate specificity from hCE2, making Caco-2 cells unsuitable for prediction of human intestinal absorption of prodrugs. However, we have developed a novel experimental method for predicting the human intestinal absorption of prodrugs using Caco-2 cells in which CES-mediated hydrolysis has been inhibited. The expression of hCE2 shows inter-individual variation and is regulated by several mechanisms, such as gene polymorphism and epigenetic processes. There are no reports suggesting that severe toxicity is associated with prodrugs due to genetic polymorphism of the CES2 gene.
ABSTRACT:Both mRNA and protein levels of the carboxylesterase (CES) isozymes, hCE1 and hCE2, in Caco-2 cells increase in a timedependent manner, but hCE1 levels are always higher than those of hCE2. In human small intestine, however, the picture is reversed, with hCE2 being the predominant isozyme. Drugs hydrolyzed by hCE1 but not by hCE2 can be hydrolyzed in Caco-2 cells, but they are barely hydrolyzed in human small intestine. The results in Caco-2 cells can be misleading as a predictor of what will happen in human small intestine. In the present study, we proposed a novel method for predicting the absorption of prodrugs in the absence of CES-mediated hydrolysis in Caco-2 cells. The specific inhibition against CES was achieved using bis-p-nitrophenyl phosphate (BNPP). The optimal concentration of BNPP was determined at 200 M by measuring the transport and hydrolysis of O-butyryl-propranolol (butyryl-PL) as a probe. BNPP concentrations of more than 200 M inhibited 86% of hydrolysis of butyryl-PL, resulting in an increase in its apparent permeability. Treatment with 200 M BNPP did not affect paracellular transport, passive diffusion, or carrier-mediated transport. Furthermore, the proposed evaluation system was tested for ethyl fexofenadine (ethyl-FXD), which is a superior substrate for hCE1 but a poor one for hCE2. CES-mediated hydrolysis of ethyl-FXD was 94% inhibited by 200 M BNPP, and ethyl-FXD was passively transported as an intact prodrug. From the above observations, the novel evaluation system is effective for the prediction of human intestinal absorption of estertype prodrugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.