A major part of cataractogenic mutations in human αA-Crystallin (αA-Cry) occurs at Arg residues. While Arg54 is highly conserved within different species, the cataractogenic mutations R54L, R54P and R54C have been recently identified in CRYAA gene, encoding human αA-Cry. The detailed structural and functional aspects, stability and amyloidogenic properties of αA-Cry were determined upon the above-mentioned missense mutations, using various spectroscopic techniques, gel electrophoresis, electron microscopy, size exclusion chromatography analyses, and chaperone-like activity assay. The different mutations at Arg54 result in diverse structural alterations among mutant proteins. In addition, the mutant proteins displayed reduced thermal stability, increased amyloidogenic properties and attenuated chaperone-like activity against aggregation of γ-Cry, catalase and lysozyme. The mutant proteins were also capable of forming larger oligomeric complexes with γ-Cry which is the natural partner of α-Cry in the eye lenses. The most significant structural and functional damages were observed upon R54L mutation which was also accompanied with increased oligomeric size distribution of the mutant protein. The cataractogenic nature of R54P mutation can be explained with its detrimental effect on chaperone-like activity, conformational stability and proteolytic digestibility of the mutant protein. Also, R54C αA-Cry displayed an important intrinsic propensity for disulfide protein cross-linking with significantly reduced chaperone-like activity against all client proteins. These mutations revealed a range of detrimental effects on the structure, stability and functional properties of αA-Cry which all together can explain the pathomechanisms underlying development of the associated congenital cataract disorders.
The main components of sunlight reaching the eye lens are UVA and visible light exerting their photo-damaging effects indirectly by the aid of endogenous photosensitizer molecules such as riboflavin (RF). In this study, lens proteins solutions were incubated with RF and exposed to the sunlight. Then, gel mobility shift analysis and different spectroscopic assessments were applied to examine the structural damaging effects of solar radiation on these proteins. Exposure of lens proteins to direct sunlight, in the presence of RF, leads to marked structural crosslinking, oligomerization and proteolytic instability. These structural damages were also accompanied with reduction in the emission fluorescence of Trp and Tyr and appearance of a new absorption peak between 300 and 400nm which can be related to formation of new chromophores. Also, photo-oxidation of lens crystallins increases their oligomeric size distribution as examined by dynamic light scattering analysis. The above mentioned structural insults, as potential sources of sunlight-induced senile cataract and blindness, were significantly attenuated in the presence of ascorbic acid and glutathione which are two important components of lens antioxidant defense system. Therefore, the powerful antioxidant defense mechanism of eye lens is an important barrier against molecular photo-damaging effects of solar radiations during the life span.
The copper-catalyzed oxidation of ascorbic acid (ASA) to dehydroascorbate (DHA) and hydrogen peroxide plays a central role in pathology of cataract diseases during ageing and in diabetic patients. In the current study, the structural feature, chaperone-like activity and protective ability of peroxynitrite (PON) modified αA- and αB-Crystallin (Cry) against copper-mediated ASA oxidation were studied using different spectroscopic measurements and gel mobility shift assay. Upon PON modification, additional to protein structural alteration, the contents of nitrotyrosine, nitrotryptophan, dityrosine and carbonyl groups were significantly increased. Moreover, αB-Cry demonstrates significantly larger capacity for PON modification than αA-Cry. Also, based on the extent of PON modification, these proteins may display an improved chaperone-like activity and enhanced protective ability against copper-mediated ASA oxidation. In the presence of copper ions, chaperone-like activity of both native and PON-modified α-Cry subunits were appreciably improved. Additionally, binding of copper ions to native and PON-modified proteins results in the significant reduction of their solvent exposed hydrophobic patches. Overall, the increase in chaperone-like activity/ASA protective ability of PON-modified α-Cry and additional enhancement of its chaperoning action with copper ions appear to be an important defense mechanism offered by this protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.