Rapid changes are occurring in our global ecosystem, and stresses on human well-being, such as climate regulation and food production, are increasing, soil is a critical component of agriculture. The project aims to use Data Mining (DM) classification techniques to predict soil data. Analysis DM classification strategies such as k-Nearest-Neighbors (k-NN), Random-Forest (RF), Decision-Tree (DT) and Naïve-Bayes (NB) are used to predict soil type. These classifier algorithms are used to extract information from soil data. The main purpose of using these classifiers is to find the optimal machine learning classifier in the soil classification. in this paper we are applying some algorithms of DM and machine learning on the data set that we collected by using Weka program, then we compare the experimental result with other papers that worked like our work. According to the experimental results, the highest accuracy is k-NN has of 84 % when compared to the NB (69.23%), DT and RF (53.85 %). As a result, it outperforms the other classifiers. The findings imply that k-NN could be useful for accurate soil type classification in the agricultural domain.
Semantic web and cloud technology systems have been critical components in creating and deploying applications in various fields. Although they are self-contained, they can be combined in various ways to create solutions, which has recently been discussed in depth. We have shown a dramatic increase in new cloud providers, applications, facilities, management systems, data, and so on in recent years, reaching a level of complexity that indicates the need for new technology to address such tremendous, shared, and heterogeneous services and resources. As a result, issues with portability, interoperability, security, selection, negotiation, discovery, and definition of cloud services and resources may arise. Semantic Technologies, which has enormous potential for cloud computing, is a vital way of re-examining these issues. This paper explores and examines the role of Semantic-Web Technology in the Cloud from a variety of sources. In addition, a "cloud-driven" mode of interaction illustrates how we can construct the semantic web and provide automated semantical annotations to web applications on a large scale by leveraging Cloud computing properties and advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.