Triple helix forming oligonucleotides (TFOs) may have utility as gene targeting reagents for "in situ" gene therapy of genetic disorders. Triplex formation is challenged by negative charge repulsion between third strand and duplex phosphates, and destabilizing positive charge repulsion between adjacent protonated cytosines within pyrimidine motif third strands. Here we describe the synthesis of TFOs designed to target a site in the human beta-globin gene, which is the locus for mutations that underlie the beta-globinopathies, including sickle cell anemia. The target is an uninterrupted polypurine:polypyrimidine sequence, containing four adjacent cytosines, next to a psoralen cross-link site. Pyrimidine motif TFOs that contained four adjacent cytosines or 5-methylcytosines did not form stable triplexes at physiological pH, despite the introduction of otherwise stabilizing base and sugar analogues. We synthesized a series of pso-TFOs containing 2'-O-methyl (OMe) and 2'-O-aminoethoxy substitutions (AE), as well as 8-oxo-adenine (A8) and 2'-O-methylpseudoisocytidine (P) as neutral cytosine replacements. Thermal stability measurements indicated that TFOs with A8 did not meet criteria established in previous work. However, TFOs with P did form triplexes with appropriate T(m) and k(ON) values. A pso-TFO with AE and P residues was sufficiently active to permit the determination of targeting in living cells by direct measurement of cross-link formation at the target site. Our results validate the modification format described in our previous studies and indicate that P substitutions are an effective solution to the problem of targeting genomic sequences containing adjacent cytosines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.