BackgroundMedicinal plants are becoming more popular in the treatment of various diseases because of the adverse effects of the current therapy, especially antioxidant plant components such as phenols and flavonoids have a protective role against oxidative stress-induced degenerative diseases like diabetes. Thus, the purpose of this study was to investigate β-cell protection and antidiabetic activities of Crassocephalum crepidioides (Asteraceae) Benth. S. Moore.MethodThe in-vitro study was conducted by the pancreatic β-cell culture and α-amylase inhibition technique which includes two methods, namely starch-iodine method and 3,5-dinitrosalicylic acid (DNSA) method. On the other hand, the in-vivo study was performed by oral glucose tolerance test (OGTT) method and alloxan-induced diabetes method by using Wistar albino rat. At the end pancreatic specimens were removed and processed for histopathological study.ResultThe plant extract showed significant (*p < 0.05, **p < 0.01) effect on hyperglycemia as compared to standard (Gliclazide) in OGTT. The plant extract showed efficient protection activity of pancreatic β-cell from cell death in INS-1 cell line by significantly reduced (*p < 0.05, **p < 0.01) the levels alloxan-induced apoptosis and intracellular reactive oxygen species (ROS) accumulation. In addition, the plant extract showed a significant (*p < 0.05, **p < 0.01) effect on hyperglycemia by increases in percent of β-cells present in each islet (45% – 60%) compared to the diabetic group.ConclusionThe result showed that C. crepidioides had β-cell protection and antidiabetic activities in pancreatic β-cell culture and Wistar albino rat.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-017-1697-0) contains supplementary material, which is available to authorized users.
− Anti-Helicobacter pylori activity guided fractionation led to the isolation of five anthraquinones, two stilbenes and one naphthoquinone from the EtOAc fraction of Polygonum cuspidatum, using silica gel column chromatography, Sephadex-LH20, MPLC and recrystallization. The chemical structures were identified to be physcion (1), emodin (2), anthraglycoside B (3), trans-resveratrol (4), anthraglycoside A (5), polydatin (6), 2-methoxy-6-acetyl-7-methyljuglone (7) and citreorosein (8) by UV, 1 H-NMR, 13C-NMR and mass spectrometry. Anti-Helicobacter pylori activity including MIC values of each compound was evaluated. All of the isolates exhibited anti-H. pylori activity of which MIC values were lower than that of a positive control, quercetin. Compounds 2 and 7 showed potent growth inhibitory activity. Especially, a naphthoquinone, compound 7 displayed most potent antibacterial activity with MIC 50 value of 0.30 µM and MIC 90 value of 0.39 µM. Although anti-H. pylori activity of this plant was previously reported, this is the first report on that of compounds isolated from this species. From these findings, P. cuspidatum roots or its isolates may be useful for H. pylori infection and further study is needed to elucidate mechanism of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.