This study evaluates the level of service of shared transportation facilities through mining geotagged data from social media and analyzing the perceptions of road users. An algorithm is developed adopting a text classification approach with contextual understanding to filter out relevant information related to users’ perceptions toward active mobility. Using a heuristic-based keyword matching approach produces about 75% tweets that are out of context, so that approach is deemed unsuitable for information extraction from Twitter. This study implements six different text classification models and compares the performance of these models for tweet classification. The model is applied to real-world data to filter out relevant information, and content analysis is performed to check the distribution of keywords within the filtered data. The text classification model “term frequency-inverse document frequency” vectorizer-based logistic regression model performed best at classifying the tweets. To select the best model, the performances of the models are compared based on precision, recall, F1 score (geometric mean of precision and recall), and accuracy metrics. The findings from the analysis show that the proposed method can help produce more relevant information on walking and biking facilities as well as safety concerns. By analyzing the sentiments of the filtered data, the existing condition of biking and walking facilities in the DC area can be inferred. This method can be a critical part of the decision support system to understand the qualitative level of service of existing transportation facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.