The paper describes the SPH modeling of a plane problem of fluid flow around a rigid circular cylinder. In the model considered, the cylinder is placed in a rectangular fluid domain at a certain distance from a horizontal plane boundary, and it is subjected to fluid flow forces. The fluid motion is induced by a piston type generator. The generator -fluid system starts to move from rest at a certain moment of time. The work aims at a discrete description of the fluid flow around the cylinder and, at the same time, calculation of the pressure distribution along the circumference of the cylinder and the resultant of the pressure on the cylinder. In order to solve the initial value problem considered, a new SPH formulation of boundary conditions on the cylinder surface is proposed which match the physical condition for the fluid velocity at this boundary. For a viscous fluid, an approximate description of the stress tensor is formulated which allows to reduce the differentiation of field functions to the first order in calculating the shear forces in the SPH approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.