The significant power of deep learning networks has led to enormous development in object detection. Over the last few years, object detector frameworks have achieved tremendous success in both accuracy and efficiency. However, their ability is far from that of human beings due to several factors, occlusion being one of them. Since occlusion can happen in various locations, scale, and ratio, it is very difficult to handle. In this paper, we address the challenges in occlusion handling in generic object detection in both outdoor and indoor scenes, then we refer to the recent works that have been carried out to overcome these challenges. Finally, we discuss some possible future directions of research.
Although current computer vision systems are closer to the human intelligence when it comes to comprehending the visible world than previously, their performance is hindered when objects are partially occluded. Since we live in a dynamic and complex environment, we encounter more occluded objects than fully visible ones. Therefore, instilling the capability of amodal perception into those vision systems is crucial. However, overcoming occlusion is difficult and comes with its own challenges. The generative adversarial network (GAN), on the other hand, is renowned for its generative power in producing data from a random noise distribution that approaches the samples that come from real data distributions. In this survey, we outline the existing works wherein GAN is utilized in addressing the challenges of overcoming occlusion, namely amodal segmentation, amodal content completion, order recovery, and acquiring training data. We provide a summary of the type of GAN, loss function, the dataset, and the results of each work. We present an overview of the implemented GAN architectures in various applications of amodal completion. We also discuss the common objective functions that are applied in training GAN for occlusion-handling tasks. Lastly, we discuss several open issues and potential future directions.
Occlusion handling is one of the challenges of object detection and segmentation, and scene understanding. Because objects appear differently when they are occluded in varying degree, angle, and locations. Therefore, determining the existence of occlusion between objects and their order in a scene is a fundamental requirement for semantic understanding. Existing works mostly use deep learning based models to retrieve the order of the instances in an image or for occlusion detection. This requires labelled occluded data and it is timeconsuming. In this paper, we propose a simpler and faster method that can perform both operations without any training and only requires the modal segmentation masks. For occlusion detection, instead of scanning the two objects entirely, we only focus on the intersected area between their bounding boxes. Similarly, we use the segmentation mask inside the same area to recover the depth-ordering. When tested on COCOA dataset, our method achieves +8% and +5% more accuracy than the baselines in order recovery and occlusion detection respectively.
Nowadays steganography plays an important role in information security. There are various techniques to apply steganography; one such technique is Least Significant Bit (LSB). Due to consecutive embedding of data, LSB is highly vulnerable to data retrieval and manipulation. This study proposes a mixture between Rubik’s cube principle to scramble the audio data, and a modified LSB technique to hide the secret data. The modified LSB technique includes embedding using only irredundant bits of binary representation of each character in the secret message, and hiding in the lowest sample between two consecutive samples of the cover audio. The used technique makes the retrieval of secret message harder because it adds two levels of protection (scrambling, and hiding in the lowest sample) against the attempts of obtaining data; and makes the embedded data imperceptible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.