Recent technological developments in the construction industry are seeking to create smart cities by using Cyber-Physical Systems (CPSs) to enhance information models such as BIM. Currently, BIM models are commonly adopted to work with IoT-based systems and embrace smart technologies that offer interoperability in the communication layer. In future, it is envisioned that digital twins will provide new possibilities for cyber-physical systems via monitoring and simulation. However, rarely in this rapidly developing field is security fully considered. This paper reviews the relevant literature regarding the use of the IoT in the built environment and analyses current practices. It also presents examples of cities that use the IoT to improve construction and the lived experience. Finally, it reviews how digital twins factor in multiple layers defined in CPSs, from physical objects to information models. Based on this review, recommendations are provided documenting how BIM specifications can be expanded to become IoT compliant, enhancing standards to support cybersecurity, and ensuring digital twin and city standards can be fully integrated in future secure smart cities.
To achieve the potential of smart cities, there is a strong requirement to use a set of useful, but still accessible services within smart city systems. Interoperability challenges and roadblocks for software developers and integrators are well-known consequences of fragmented semantics across different contexts. Furthermore, in the smart city context, there is a need to ensure the security and identity of real-world services operating on this data through the adoption of access control principles (authorization and authentication). The use of ontologies to unify the diverse semantics of multiple domains is one strategy that has had considerable success in the past. This paper describes an access management ontology in smart cities developed to enable the interoperability of physical built environment assets, sensing and actuation devices and current built environment services with existing security standards, digital twin and Building Information Model (BIM) datasets. It also provides interoperability between user interfaces and the actors who use them in the context of establishing an access management in smart cities framework for the built environment. This has been validated through its implementation in the Cardiff Urban Sustainability Platform (CUSP), deployed to manage a variety of smart services on a university campus. This validation has successfully shown the ability of the ontology to function as intended in the context of a digital twin, thereby offering single sign-on and suitable access control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.