The development of a control system for an electromyographic shoulder disarticulation (EMG-SD) prosthesis to rapidly achieve a task with a reduction in the operational failure of the user. Methods: The motion planning of an EMG-SD prosthesis was automated using measured visual information through a mixed reality device. The detection of an object to be grasped and motion execution depended on the EMG of the user, which gives voluntary controllability and makes the system semiautomated. Two evaluation experiments with reaching and reachto-grasp movements were conducted to compare the performance of the conventional system when operated using only visual feedback control of the user. Results: The proposed system can more rapidly and accurately achieve reaching movements (32% faster) and more accurate (69%) reach-to-grasp movements than a conventional system. Conclusions: The proposed control system achieves a high task performance with a reduction in the operational failure of an EMG-SD prosthesis user.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.