Sequencing the large genomes of sharks. We focused on the brownbanded bamboo shark Chiloscyllium punctatum, for which we recently tabled embryonic stages 8 , and the cloudy catshark Scyliorhinus torazame. Their whole genomes, measured to be approximately 4.7 and 6.7 Gbp, respectively, were sequenced de novo to obtain assemblies including megabase-long scaffolds (Supplementary Note 1.1). We also assembled the genome of the whale shark Rhincodon typus using short sequence reads previously generated 3 (Supplementary Note 1.2). Using these genome assemblies, we performed genome-wide gene prediction, assisted by transcript evidence and protein-level homology to other vertebrates. The obtained genome assemblies and gene models exhibit high coverage (Supplementary Fig. 1), and of these, the bamboo shark genome assembly achieved the highest continuity (N50 scaffold length, 1.9 Mbp) and completeness (97% of reference orthologues identified at least partially). Using the novel gene models, we constructed orthologue groups encompassing a diverse array of vertebrate species (see below). Our products outperform existing
Evolution of novel traits is a challenging subject in biological research. Several snake lineages developed elaborate venom systems to deliver complex protein mixtures for prey capture. To understand mechanisms involved in snake venom evolution, we decoded here the ~1.4-Gb genome of a habu, Protobothrops flavoviridis. We identified 60 snake venom protein genes (SV) and 224 non-venom paralogs (NV), belonging to 18 gene families. Molecular phylogeny reveals early divergence of SV and NV genes, suggesting that one of the four copies generated through two rounds of whole-genome duplication was modified for use as a toxin. Among them, both SV and NV genes in four major components were extensively duplicated after their diversification, but accelerated evolution is evident exclusively in the SV genes. Both venom-related SV and NV genes are significantly enriched in microchromosomes. The present study thus provides a genetic background for evolution of snake venom composition.
Molecular ecology research often targets intra-or interspecific variations of information in DNA sequences. In eukaryotes, DNA molecules are found in cell nuclei as part of "chromatin", a complex of proteins that modulates the conformation of chromosomal DNAs in the nuclear environment. Hi-C is a method for the genome-wide capture of such chromosome conformations and was originally developed for detecting the long-range interaction of chromatins (Lieberman-Aiden et al., 2009) (Figure 1). This method has more recently been applied to the scaffolding of genome sequences from diverse species
Vision of sharks embraces various biological and ecological themes ranging from predation and adaptation to deep‐sea life. However, behavioural and genetic studies have been limited by their elusive lifestyles, repeatedly reported declines of wild populations, and their unique life‐history traits including low fecundity and enhanced longevity. Sharks have also not been actively studied on the cellular and molecular levels, because of additional difficulties in cell culture, tissue collection and genome sequencing. A recent study circumvented some of these obstacles by means of genome informatics thereby portrayed the variation of visual opsin gene repertoires among elasmobranchs (sharks and rays) and spectral shifts of the rhodopsin pigment. Comprehensive surveys in whole‐genome sequences are also revealing the repertoires of nonvisual opsins with unknown functions. This review is aimed to summarize existing studies on shark opsins with an emphasis on genomic investigation of gene repertoires and to provide insights into the better understanding of underwater ecology of marine megafauna with in vitro experimentation.
The genes encoding group IIE phospholipase A2, abbreviated as IIE PLA2, and its 5' and 3' flanking regions of Crotalinae snakes such as Protobothrops flavoviridis, P. tokarensis, P. elegans, and Ovophis okinavensis, were found and sequenced. The genes consisted of four exons and three introns and coded for 22 or 24 amino acid residues of the signal peptides and 134 amino acid residues of the mature proteins. These IIE PLA2s show high similarity to those from mammals and Colubridae snakes. The high expression level of IIE PLA2s in Crotalinae venom glands suggests that they should work as venomous proteins. The blast analysis indicated that the gene encoding OTUD3, which is ovarian tumor domain-containing protein 3, is located in the 3' downstream of IIE PLA2 gene. Moreover, a group IIA PLA2 gene was found in the 5' upstream of IIE PLA2 gene linked to the OTUD3 gene (OTUD3) in the P. flavoviridis genome. It became evident that the specified arrangement of IIA PLA2 gene, IIE PLA2 gene, and OTUD3 in this order is common in the genomes of humans to snakes. The present finding that the genes encoding various secretory PLA2s form a cluster in the genomes of humans to birds is closely related to the previous finding that six venom PLA2 isozyme genes are densely clustered in the so-called NIS-1 fragment of the P. flavoviridis genome. It is also suggested that venom IIA PLA2 genes may be evolutionarily derived from the IIE PLA2 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.