BackgroundLactulose is a synthetic disaccharide that can be catalyzed only by intestinal bacteria in humans and rodents, and a large amount of hydrogen is produced by bacterial catalysis of lactulose. We previously reported marked effects of ad libitum administration of hydrogen water on prevention of a rat model of Parkinson’s disease (PD).MethodsEnd-alveolar breath hydrogen concentrations were measured in 28 healthy subjects and 37 PD patients, as well as in 9 rats after taking hydrogen water or lactulose. Six-hydroxydopamine (6-OHDA)-induced hemi-PD model was stereotactically generated in rats. We compared effects of hydrogen water and lactulose on prevention of PD. We also analyzed effects of continuous and intermittent administration of 2% hydrogen gas.ResultsHydrogen water increased breath hydrogen concentrations from 8.6 ± 2.1 to 32.6 ± 3.3 ppm (mean and SEM, n = 8) in 10 min in healthy subjects. Lactulose increased breath hydrogen concentrations in 86% of healthy subjects and 59% of PD patients. Compared to monophasic hydrogen increases in 71% of healthy subjects, 32% and 41% of PD patients showed biphasic and no increases, respectively. Lactulose also increased breath hydrogen levels monophasically in 9 rats. Lactulose, however, marginally ameliorated 6-OHDA-induced PD in rats. Continuous administration of 2% hydrogen gas similarly had marginal effects. On the other hand, intermittent administration of 2% hydrogen gas prevented PD in 4 of 6 rats.ConclusionsLack of dose responses of hydrogen and the presence of favorable effects with hydrogen water and intermittent hydrogen gas suggest that signal modulating activities of hydrogen are likely to be instrumental in exerting a protective effect against PD.
Molecular hydrogen (H2) is an agent with potential applications in oxidative stress-related and/or inflammatory disorders. H2 is usually administered by inhaling H2-containing air (HCA) or by oral intake of H2-rich water (HRW). Despite mounting evidence, the molecular mechanism underlying the therapeutic effects and the optimal method of H2 administration remain unclear. Here, we investigated whether H2 affects signaling pathways and gene expression in a dosage- or dose regimen-dependent manner. We first examined the H2 concentrations in blood and organs after its administration and found that oral intake of HRW rapidly but transiently increased H2 concentrations in the liver and atrial blood, while H2 concentrations in arterial blood and the kidney were one-tenth of those in the liver and atrial blood. In contrast, inhalation of HCA increased H2 equally in both atrial and arterial blood. We next examined whether H2 alters gene expression in normal mouse livers using DNA microarray analysis after administration of HCA and HRW. Ingenuity Pathway Analysis revealed that H2 suppressed the expression of nuclear factor-kappa B (NF-κB)-regulated genes. Western blot analysis showed that H2 attenuated ERK, p38 MAPK, and NF-κB signaling in mouse livers. Finally, we evaluated whether the changes in gene expression were influenced by the route of H2 administration and found that the combination of both HRW and HCA had the most potent effects on signaling pathways and gene expression in systemic organs, suggesting that H2 may act not only through a dose-dependent mechanism but also through a complex molecular network.
This study investigated the influence of cycle exercise on acetone concentration in expired air and skin gas. The subjects for this experiment were eight healthy males. Subjects performed a continuous graded exercise test on a cycle ergometer. The workloads were 360 (1.0 kg), 720 (2.0 kg), 990 (2.75 kg) kgm/min, and each stage was 5 min in duration. A pedaling frequency of 60 rpm was maintained. Acetone concentration was analyzed by gas chromatography. The acetone concentration in expired air and skin gas during exercise at 990 kgm/min intensity was significantly increased compared with the basal level. The skin-gas acetone concentration at 990 kgm/min significantly increased compared with the 360 kgm/min (P < 0.05). The acetone excretion of expired air at 720 kgm/min and 990 kgm/min significantly increased compared with the basal level (P < 0.05). Acetone concentration in expired air was 4-fold greater than skin gas at rest and 3-fold greater during exercise (P < 0.01). Skin gas acetone concentration significantly related with expired air (r = 0.752; P < 0.01). This study confirmed that the skin-gas acetone concentration reflected that of expired air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.