Cervical cancer can be prevented by having regular screenings to find any precancers and treat them. The Pap test looks for any abnormal or precancerous changes in the cells on the cervix. However, the manual screening of Pap smear in the microscope is subjective with poorly reproducible criteria. Therefore, the aim of this study was to develop a computer-assisted screening system for cervical cancer using digital image processing of Pap smear images. The analysis of Pap smear image is important in the cervical cancer screening system. There were four basic steps in our cervical cancer screening system. In cell segmentation, nuclei were detected using a shape-based iterative method, and the overlapping cytoplasm was separated using a marker-control watershed approach. In the features extraction step, three important features were extracted from the regions of segmented nuclei and cytoplasm. RF (random forest) algorithm was used as a feature selection method. In the classification stage, bagging ensemble classifier, which combined the results of five classifiers—LD (linear discriminant), SVM (support vector machine), KNN (k-nearest neighbor), boosted trees, and bagged trees—was applied. SIPaKMeD and Herlev datasets were used to prove the effectiveness of our proposed system. According to the experimental results, 98.27% accuracy in two-class classification and 94.09% accuracy in five-class classification was achieved using the SIPaKMeD dataset. When the results were compared with five classifiers, our proposed method was significantly better in two-class and five-class problems.
Glaucoma is a major global cause of blindness. As the symptoms of glaucoma appear, when the disease reaches an advanced stage, proper screening of glaucoma in the early stages is challenging. Therefore, regular glaucoma screening is essential and recommended. However, eye screening is currently subjective, time-consuming and labor-intensive and there are insufficient eye specialists available. We present an automatic two-stage glaucoma screening system to reduce the workload of ophthalmologists. The system first segmented the optic disc region using a DeepLabv3+ architecture but substituted the encoder module with multiple deep convolutional neural networks. For the classification stage, we used pretrained deep convolutional neural networks for three proposals (1) transfer learning and (2) learning the feature descriptors using support vector machine and (3) building ensemble of methods in (1) and (2). We evaluated our methods on five available datasets containing 2787 retinal images and found that the best option for optic disc segmentation is a combination of DeepLabv3+ and MobileNet. For glaucoma classification, an ensemble of methods performed better than the conventional methods for RIM-ONE, ORIGA, DRISHTI-GS1 and ACRIMA datasets with the accuracy of 97.37%, 90.00%, 86.84% and 99.53% and Area Under Curve (AUC) of 100%, 92.06%, 91.67% and 99.98%, respectively, and performed comparably with CUHKMED, the top team in REFUGE challenge, using REFUGE dataset with an accuracy of 95.59% and AUC of 95.10%.
This paper proposes a novel algorithm to estimate a log-compressed K distribution parameter and presents an algorithm to discriminate breast tumors in ultrasonic images. We computed a total of 208 features for discrimination, including those based on a parameter of a log-compressed K-distribution, which quantifies the homogeneity of the echo pattern in the tumor, but is influenced by compression parameters in the ultrasonic device. The proposed algorithm estimates the parameter of the log-compressed K-distribution in a manner free from this influence. To quantify irregularities in tumor shape, pattern-spectrum-based features were newly developed in this paper. The discrimination process uses an ensemble classifier trained by a multiclass AdaBoost learning algorithm (AdaBoost.M2), combined with a sequential feature-selection process. A 10-fold cross-validation test validated the performance, and the results were compared with those of a Mahalanobis distance-based classifier and a multiclass support vector machine. A total of 200 carcinomas, 50 fibroadenomas, and 50 cysts were used in the experiments. This paper demonstrates that the combination of a classifier trained by AdaBoost.M2 and features based on the estimated parameter of a log-compressed K-distribution, as well as those of the pattern spectrum, are useful for the discrimination of tumors.
Electrocardiogram (ECG) has been actively proposed as an aliveness biometric for years. In realistic application, this type of biometrics still needs to be verified in some conditions related to the practical use. Therefore, we propose in this paper the study of two themes that concern its realistic application. First, the single beat of an electrocardiogram (SB‐ECG) is used as the ECG feature, which aims to decrease the time to acquire the ECG from the individual. Second, for the robustness study of ECG features to heart rate variability (HRV), we investigate the relation between the correct identification and the HRV conditions. The HRV‐ECG data is set up and collected by using the Bio‐Pac system. The overall processes of the proposed method are the following: Continuous wavelet transform (CWT) is used to analyze each SB‐ECG. Then the root‐mean square (RMS) value of total energy of the wavelet coefficients of each P, QRS, and T segment is calculated. Next, the Fisher linear discriminant analysis (FLDA) is applied to all sets of the RMS value for dimension reduction. Lastly, the normalized Euclidean distance is implemented as the classifier. The experimental results demonstrate that, with the proposed method, the classification achieves 97% accuracy and the robustness study achieves over 80% accuracy with HRV‐ECG change up to 20%. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.