Forming microspheres or microbeads from nanofibrous materials has recently attracted research interest for their applications in various fields, because these structures greatly impact cellular behaviors and functions. However, conventional methods of preparing microspheres or microbeads have limitations, such as limited variety of material. Here, we propose a new fabrication process for forming a nanofibrous microsphere composed of bacterial cellulose (BC), which is synthesized through fermentation by specific bacteria. The process uses a hydrogel fiber containing spherical cavities. The bacteria encapsulated into the cavities produce BC, resulting in the formation of BC microspheres. Because of its simplicity, robustness, and cost-effectiveness, this process is promising for applications, such as in biochemical engineering and cell delivery systems.
This article describes the local deposition, or micropatterning, of silica nanoparticles (NPs) using an electrospray method with a stencil mask. The proposed technique can be carried out in a single step at room temperature and atmospheric pressure under dry conditions, allowing it to be used with water-or vacuum-sensitive materials, and leading to cost reductions and high throughput. An evaluation of the patterning accuracy using a 20 µm thick mask showed that for patterns with line widths greater than 50 µm, the pattern was reproduced with an accuracy greater than 95%. When silver NPs were preferably deposited on the silica NPs using a modified silver mirror reaction, they were found to exhibit strong surface-enhanced Raman scattering effects. The proposed process is readily applicable to the development of highperformance micro total analysis systems.
Open cultivation systems to monoculture microorganisms are promising for the commercialization of low-value commodities because they reduce the cultivation cost. However, contamination from biological pollutants frequently impedes the process. Here we propose a cultivation method using hollow hydrogel microfibers encapsulating microorganisms. Due to the pore size, hydrogels allow nutrients and waste to pass through while preventing invading microorganisms from entering the microfiber. Experimental cultivation shows the growth of target bacteria inside the alginate hydrogel microfiber during exposure to invading bacteria. The membrane thickness of the microfiber greatly affects the bacterial growth due to changes in membrane permeability. The enhancement of mechanical toughness is also demonstrated by employing a double-network hydrogel for long-term cultivation. The hollow hydrogel microfiber has the potential to become a mainstream solution for mass-cultivation of microorganisms in an open system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.