In clinical use, irinotecan hydrochloride (CPT‐11; 7‐ethyl‐10‐[4‐(piperidmo)‐l‐piperidino]carbonyl‐oxycamptothecin), a novel antitumor agent, causes a relatively high incidence of severe forms of diarrhea. We investigated whether baicalin, an inhibitor of β‐glucuronidase, which deconjugates the glucuronide of the active metabolite of CPT‐11, SN‐38 (7‐ethyl‐10‐hydorxycamptothecin), and Japanese herbal medicines (Kampo medicines) which contain baicalin can ameliorate CPT‐11‐induced intestinal toxicity in rats. CPT‐11 (60 mg/kg i.v. once daily for 4 consecutive days) induced intestinal toxicity characterized by diarrhea, loss of body weight, anorexia and disruption of intestinal epithelium. Treatment with baicalin (25 mg/kg p.o. twice daily) or Kampo medicines (TJ‐14 and TJ‐114; 1 g/kg p.o. twice daily) from the day before to 4 or 10 days after the start of CPT‐11 administration resulted in significantly decreased weight loss, improved anorexia and a delayed onset of diarrheal symptoms. Histological examination revealed that Kampo medicine‐treated animals had less damage to the intestinal epithelium and that damage was repaired more rapidly than in control rats. These results suggest that the prophylactic use of Kampo medicines (TJ‐14 and TJ‐114) may be of value against CPT‐11‐induced intestinal toxicity.
Trastuzumab deruxtecan (T‐DXd: DS‐8201a) is an anti‐human epidermal growth factor receptor 2 (HER2) Ab–drug conjugated with deruxtecan (DXd), a derivative of exatecan. The objective of this study was to characterize T‐DXd‐induced lung toxicity in cynomolgus monkeys. Trastuzumab deruxtecan was injected i.v. into monkeys once every 3 weeks for 6 weeks (10, 30, and 78.8 mg/kg) or for 3 months (3, 10, and 30 mg/kg). To evaluate the involvement of DXd alone in T‐DXd‐induced toxicity, DXd monohydrate was given i.v. to monkeys once a week for 4 weeks (1, 3, and 12 mg/kg). Interstitial pneumonitis was observed in monkeys given T‐DXd at 30 mg/kg or more. The histopathological features of diffuse lymphocytic infiltrates and slight fibrosis were similar to interstitial lung diseases (ILD)/pneumonitis related to anticancer drugs in patients, with an incidence that was dose‐dependent and dose‐frequency‐dependent. Monkeys receiving DXd monohydrate did not suffer lung toxicity, although the DXd exposure level was higher than that of DXd in the monkeys given T‐DXd. The HER2 expression in monkey lungs was limited to the bronchial level, although the lesions were found at the alveolar level. Immunohistochemical analysis confirmed that T‐DXd localization was mainly in alveolar macrophages, but not pulmonary epithelial cells. These findings indicate that monkeys are an appropriate model for investigating T‐DXd‐related ILD/pneumonitis. The results are also valuable for hypothesis generation regarding the possible mechanism of T‐DXd‐induced ILD/pneumonitis in which target‐independent uptake of T‐DXd into alveolar macrophages could be involved. Further evaluation is necessary to clarify the mechanism of ILD/pneumonitis in patients with T‐DXd therapy.
Metabolism studies are crucial for data interpretation from rodent toxicity and carcinogenicity studies. Metabolism studies are usually conducted in 6 to 8 week old rodents. Long-term studies often continue beyond 100 weeks of age. The potential for age-related changes in transcript levels of genes encoding for enzymes associated with metabolism was evaluated in the liver of male F344/N rats at 32, 58, and 84 weeks of age. Differential expression was found between the young and old rats for genes whose products are involved in both phase I and phase II metabolic pathways. Thirteen cytochrome P450 genes from CYP families 1-3 showed alterations in expression in the older rats. A marked age-related decrease in expression was found for 4 members of the Cyp3a family that are critical for drug metabolism in the rat. Immunohistochemical results confirmed a significant decrease in Cyp3a2 and Cyp2c11 protein levels with age. This indicates that the metabolic capacity of male rats changes throughout a long-term study. Conducting multiple hepatic microarray analyses during the conduct of a long-term study can provide a global view of potential metabolic changes that might occur. Alterations that are considered crucial to the interpretation of long-term study results could then be confirmed by subsequent metabolic studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.