Five immortalized brain capillary endothelial cell lines (TM-BBB1-5) were established from 3 transgenic mice harboring temperaturesensitive simian virus 40 large T-antigen gene (Tg mouse). These cell lines expressed active large Tantigen and grew well at 33°C with a doubling time of about 20 to 30 hours. TM-BBBs also grew at 37°C but not at 39°C. However, growth was restored when the temperature of the culture was lowered to 33°C. Although significant amounts of large T-antigen were shown to be present in the cell culture at 33°C, there was less of this complex at 37°C and 39°C. TMBBBs expressed the typical endothelial marker, von Willebrand factor, and exhibited acetylated lowdensity lipoprotein uptake activity. The alkaline phosphatase and Ȗ-glutamyltranspeptidase activity in
The purpose of the present study was to characterize the adenosine transport system(s) at the inner blood-retinal barrier (inner BRB). A conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2), used as an in vitro model of the inner BRB, expresses equilibrative nucleoside transporter 1 (ENT1), ENT2, concentrative nucleoside transporter 2 (CNT2), and CNT3 mRNAs. TR-iBRB2 cells exhibited an Na+-independent and concentration-dependent [3H]adenosine uptake with a Michaelis-Menten constant of 28.5 microM and a maximum uptake rate of 814 pmol/(min mg protein). [3H]Adenosine uptake by TR-iBRB2 cells was strongly inhibited by 2 mM adenosine, inosine, uridine, and thymidine. On the other hand, this process was not inhibited by 100 nM nitrobenzylmercaptopurine riboside and dipyridamole. These uptake studies suggest that ENT2 is involved in [3H]adenosine uptake by TR-iBRB2 cells. Quantitative real-time PCR revealed that the expression of ENT2 mRNA is 5.5-fold greater than that of ENT1 mRNA. An in vivo study suggested that [3H]adenosine is transported from the blood to the retina and significantly inhibited by adenosine and thymidine. The results of this study show that ENT2 most likely mediates adenosine transport at the inner BRB and is expected to play an important role in regulating the adenosine concentration in the retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.