Results: An injection of recombinant FGF-23 caused a reduction in serum phosphate and 1,25(OH) 2 D levels. A decrease in serum phosphate was first observed 9 h after the injection and was accompanied with a reduction in renal mRNA and protein levels for the type IIa sodium-phosphate cotransporter (NaPi-2a). There was no increase in the parathyroid hormone (PTH) level throughout the experiment, and hypophosphatemia was reproduced by FGF-23 in parathyroidectomized rats. Before this hypophosphatemic effect, the serum 1,25(OH) 2 D level had already descended at 3 h and reached the nadir 9 h after the administration.
Nitrification, a key process in the global nitrogen cycle that generates nitrate through microbial activity, may enhance losses of fertilizer nitrogen by leaching and denitrification. Certain plants can suppress soil-nitrification by releasing inhibitors from roots, a phenomenon termed biological nitrification inhibition (BNI). Here, we report the discovery of an effective nitrification inhibitor in the root-exudates of the tropical forage grass Brachiaria humidicola (Rendle) Schweick. Named ''brachialactone,'' this inhibitor is a recently discovered cyclic diterpene with a unique 5-8-5-membered ring system and a ␥-lactone ring. It contributed 60 -90% of the inhibitory activity released from the roots of this tropical grass. Unlike nitrapyrin (a synthetic nitrification inhibitor), which affects only the ammonia monooxygenase (AMO) pathway, brachialactone appears to block both AMO and hydroxylamine oxidoreductase enzymatic pathways in Nitrosomonas. global warming ͉ nitrogen pollution ͉ nitrous oxide emissions ͉ root exudation ͉ climate change M ost modern agricultural systems are based on large inputs of inorganic nitrogen (N), with ammonium (NH 4 ϩ ) being the primary N source (1, 2). Also, current crop management practices result in the development of highly nitrifying soil environments (3, 4). Nitrification results in the transformation of the relatively immobile NH 4 ϩ to highly mobile nitrate (NO 3 Ϫ ), making inorganic N susceptible to losses through leaching of NO 3 Ϫ and/or gaseous N emissions, potentially initiating a cascade of environmental and health problems (1, 2, 5, 6). Nitrous oxide (N 2 O) is one of the three major biogenic greenhouse gases contributing to global warming, produced primarily from denitrification processes in agricultural systems (5, 7). Also, assimilation of NO 3 Ϫ by plants can result in further N 2 O emissions directly from plant canopies (8). The low agronomic N-use efficiency (NUE) found in many agricultural systems is largely the result of N losses associated with nitrification (i.e., N losses from NO 3 Ϫ leaching and denitrification) (9-11). Most plants have the ability to assimilate both NH 4 ϩ and NO 3 Ϫ (12); therefore, nitrification does not need to be a dominant process in the N cycle for efficient N use.Nitrification is low in some forest and grassland soils (13-17). Since the early 1960s, some tropical grasses have been suspected of having the capacity to inhibit nitrification (18-21). However, this concept remained controversial due to the lack of direct evidence showing such inhibitory effects or the identification of specific inhibitors (22).We adopted a very sensitive bioassay using a recombinant luminescent Nitrosomonas europaea to detect biological nitrification inhibition (BNI) in plant-soil systems with the inhibitory activity of roots expressed in allylthiourea units (ATU) (23). Using this methodology, we were able to show that certain plants release nitrification inhibitors from their roots (23-26). Such BNI capacity appears to be relatively widespread among...
Hypophosphatemic rickets/osteomalacia with inappropriately low serum 1,25-dihidroxyvitamin D level is commonly observed in X-linked hypophosphatemic rickets/osteomalacia, autosomal dominant hypophosphatemic rickets/osteomalacia and tumor-induced osteomalacia. Although the involvement of a newly identified factor, FGF-23, in the pathogenesis of ADHR and TIO has been suggested, clinical evidence indicating the role of FGF-23 has been lacking. We have previously shown that FGF-23 is cleaved between Arg(179) and Ser(180), and this processing abolished biological activity of FGF-23 to induce hypophosphatemia. Therefore, sandwich ELISA for biologically active intact human FGF-23 was developed using two kinds of monoclonal antibodies that requires the simultaneous presence of both the N-terminal and C-terminal portion of FGF-23. The serum levels of FGF-23 in healthy adults were measurable and ranged from 8.2 to 54.3 ng/L. In contrast, those in a patient with TIO were over 200 ng/L. After the resection of the responsible tumor, the elevated FGF-23 level returned to normal level within 1 h. The increase of serum concentrations of 1,25-dihidroxyvitamin D and phosphate, and the decrease of serum 24,25-dihydroxyvitamin D followed the change of FGF-23. In addition, the elevated serum FGF-23 levels were demonstrated in most patients with XLH. It is likely that increased serum levels of FGF-23 contributes to the development of hypophosphatemia not only in TIO but also in XLH.
A bioluminescence assay using recombinant Nitrosomonas europaea was adopted to detect and quantify natural nitrification inhibitors in plant-soil systems. The recombinant strain of N. europaea produces a distinct two-peak luminescence due to the expression of luxAB genes, introduced from Vibrio harveyi, during nitrification. The bioluminescence produced in this assay is highly correlated with NO 2 -production (r 2 = 0.94). Using the assay, we were able to detect significant amounts of a nitrification inhibitor produced by the roots of Brachiaria humidicola (Rendle) Schweick. We propose that the inhibitory activity produced/released from plants be termed 'biological nitrification inhibition' (BNI) to distinguish it from industrially produced inhibitors. The amount of BNI activity produced by roots was expressed in units defined in terms of the action of a standard inhibitor allylthiourea (AT). The inhibitory effect from 0.22 lM AT in an assay containing 18.9 mM of NH 4 + is defined as one AT unit of activity. A substantial amount of BNI activity was released from the roots of B. humidicola (15-25 AT unit g -1 root dry wt day -1 ). The BNI activity released was a function of the growth stage and N content of the plant. Shoot N levels were positively correlated with the release of BNI activity from roots (r 2 = 0.76). The inhibitor/s released from B. humidicola roots suppressed soil nitrification. Additions of 20 units of BNI per gram of soil completely inhibited NO 3 -formation in a 55-day study and remained functionally stable in the soil for 50 days. Both the ammonia monooxygenase and the hydroxylaminooxidoreductase enzymatic pathways in Nitrosomonas were effectively blocked by the BNI activity released from B. humidicola roots. The proposed bioluminescence assay can be used to characterize and determine the BNI activity of plant roots, thus it could become a powerful tool in genetically exploiting the BNI trait in crops and pastures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.