Summary Tree stems from wetland, floodplain and upland forests can produce and emit methane (CH4). Tree CH4 stem emissions have high spatial and temporal variability, but there is no consensus on the biophysical mechanisms that drive stem CH4 production and emissions. Here, we summarize up to 30 opportunities and challenges for stem CH4 emissions research, which, when addressed, will improve estimates of the magnitudes, patterns and drivers of CH4 emissions and trace their potential origin. We identified the need: (1) for both long‐term, high‐frequency measurements of stem CH4 emissions to understand the fine‐scale processes, alongside rapid large‐scale measurements designed to understand the variability across individuals, species and ecosystems; (2) to identify microorganisms and biogeochemical pathways associated with CH4 production; and (3) to develop a mechanistic model including passive and active transport of CH4 from the soil–tree–atmosphere continuum. Addressing these challenges will help to constrain the magnitudes and patterns of CH4 emissions, and allow for the integration of pathways and mechanisms of CH4 production and emissions into process‐based models. These advances will facilitate the upscaling of stem CH4 emissions to the ecosystem level and quantify the role of stem CH4 emissions for the local to global CH4 budget.
Summary1 Two non-mutually exclusive hypotheses have been proposed to explain the evolutionary advantages of mast seeding (the intermittent production of large crops of flowers or seeds by a population of perennial plants). Mast seeding could have evolved as a result of increased pollination efficiency in mast-flowering years and/or as an anti-predator adaptation that increases the survival of seeds by alternately starving seed predators in non-mast years and satiating them in mast years. 2 We investigated annual seed crops to test the relative contributions of pollination efficiency and pre-dispersal predator satiation to mast seeding in Fagus crenata , a tall tree species dominating cool-temperate forests in Japan. Thirteen-year (1990Thirteen-year ( -2002 time series data were collected for five beech forests in south-western Hokkaido. 3 The negative relationship observed between the pollination failure rate and the total seed crop in the current year supports the pollination efficiency hypothesis. The predator satiation hypothesis was also supported by the fact that the predation rate showed a good fit to the ratio of successive total seed crops, suggesting that a numerical response (starving the predator in low seed years) operated in F . crenata . 4 Key-factor analysis revealed that pre-dispersal seed predation had a larger effect on seed production per flower than did pollination efficiency. 5 We used a simulation model to examine how the magnitude of fluctuation in the total seed crop would influence the pollination failure rate, the predation rate and the viable seed rate. The mean levels of fluctuation of total seed crops of F. crenata were just large enough to provide maximum benefits from predator satiation at some sites. 6 Mast seeding in F. crenata thus appears to be determined by selective pressures from its seed predators.
To determine the means and variations in CH4 uptake and N2O emission in the dominant soil and vegetation types to enable estimation of annual gases fluxes in the forest land of Japan, we measured monthly fluxes of both gases using a closed‐chamber technique at 26 sites throughout Japan over 2 years. No clear seasonal changes in CH4 uptake rates were observed at most sites. N2O emission was mostly low throughout the year, but was higher in summer at most sites. The annual mean rates of CH4 uptake and N2O emission (all sites combined) were 66 (2.9–175) µg CH4‐C m−2 h−1 and 1.88 (0.17–12.5) µg N2O‐N m−2 h−1, respectively. Annual changes in these fluxes over the 2 years were small. Significant differences in CH4 uptake were found among soil types (P < 0.05). The mean CH4 uptake rates (µg CH4‐C m−2 h−1) were as follows: Black soil (95 ± 39, mean ± standard deviation [SD]) > Brown forest soil (60 ± 27) ≥ other soils (20 ± 24). N2O emission rates differed significantly among vegetation types (P < 0.05). The mean N2O emission rates (µg N2O‐N m−2 h−1) were as follows: Japanese cedar (4.0 ± 2.3) ≥ Japanese cypress (2.6 ± 3.4) > hardwoods (0.8 ± 2.2) = other conifers (0.7 ± 1.4). The CH4 uptake rates in Japanese temperate forests were relatively higher than those in Europe and the USA (11–43 µg CH4‐C m−2 h−1), and the N2O emission rates in Japan were lower than those reported for temperate forests (0.23–252 µg N2O‐N m−2 h−1). Using land area data of vegetation cover and soil distribution, the amount of annual CH4 uptake and N2O emission in the Japanese forest land was estimated to be 124 Gg CH4‐C year−1 with 39% uncertainty and 3.3 Gg N2O‐N year−1 with 76% uncertainty, respectively.
Dendroecological techniques were used to study the dynamics and species recruitment patterns, spanning nearly four centuries, for a mesic, montane, old-growth forest in Hokkaido, northern Japan. The forest is dominated by Abies sachalinensis (Masters), Acer palmatum (Thunb.),Quercus mongolica var. grosseserrata (Rehd.), and Cercidiphyllum japonicum (Sieb.). From 1620 to 1750 and 1820 to 1840, Q. mongolica exhibited continuous recruitment into the overstory. A lack of recruitment for all tree species from 1750 to 1820 followed a 1739 volcanic eruption 200 km from the study area. Release events for individual trees occurred almost every decade of the stand history, indicating that frequent small-scale disturbances coupled with infrequent large-scale disturbances, impact tree growth and species recruitment. From 1870 to 1950, canopy recruitment of Abies and Acer dominated the forest, while recruitment of Quercus ceased. These later successional species appeared to be replacing Quercus, suggesting that the syndrome of declining oak dominance is an increasingly global phenomenon. However, successional patterns in the forest are difficult to predict because intensive deer browsing has recently prevented canopy recruitment of all tree species and the possibility of future large-scale disturbances, such as fire and volcanic eruption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.