Antimony (Sb) is a naturally occurring toxic element commonly associated with arsenic (As) in the environment and both elements have similar chemistry and toxicity. Increasing numbers of studies have focused on microbial As transformations, while microbial Sb interactions are still not well understood. To gain insight into microbial roles in the geochemical cycling of Sb and As, soils from Sb mine tailing were examined for the presence of Sb- and As-oxidizing bacteria. After aerobic enrichment culturing with AsIII (10 mM) or SbIII (100 μM), pure cultures of Pseudomonas- and Stenotrophomonas-related isolates with SbIII oxidation activities and a Sinorhizobium-related isolate capable of AsIII oxidation were obtained. The AsIII-oxidizing Sinorhizobium isolate possessed the aerobic arsenite oxidase gene (aioA), the expression of which was induced in the presence of AsIII or SbIII. However, no SbIII oxidation activity was detected from the Sinorhizobium-related isolate, suggesting the involvement of different mechanisms for Sb and As oxidation. These results demonstrate that indigenous microorganisms associated with Sb mine soils are capable of Sb and As oxidation, and potentially contribute to the speciation and mobility of Sb and As in situ.
A tributyltin (TBT) resistance gene was isolated from the TBT-resistant marine origin bacterium Pseudomonas aeruginosa 25W. This gene was identical to PA0320 deposited in the P. aeruginosa PAO1 database (http://www.pseudomonas.com). The deduced amino acid sequence of PA0320 appears to be homologous to the YgiW proteins of Escherichia coli and Salmonella enterica. The deletion mutant of PA0320 showed a reduction of growth rate in the presence of TBT. A susceptibility test to cadmium, mercury, hydrogen peroxide and acidic pH in the deletion mutant showed an increasing susceptibility to them. PA0320 plays a certain role in stress tolerance against TBT as well as in stressors producing reactive oxygen species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.