Tissue plasminogen activator (tPA) is a serine protease that catalyzes the conversion of plasminogen (plg) to plasmin, which in turn functions to degrade extracellular matrix proteins in the central nervous system. The tPA-plasmin system plays a role in synaptic plasticity and remodeling. Here we show that this protease system participates in the rewarding effects of morphine by acutely regulating morphine-induced dopamine release in the nucleus accumbens (NAcc). A single morphine treatment induced tPA mRNA and protein expression in a naloxone-sensitive manner, which was associated with an increase in the enzyme activity in the NAcc. The acute effect of morphine in inducing tPA expression was diminished after repeated administration. Morphine-induced conditioned place preference and hyperlocomotion were significantly reduced in tPA ؊/؊ and plg ؊/؊ mice, being accompanied by a loss of morphine-induced dopamine release in the NAcc. The defect of morphine-induced dopamine release and hyperlocomotion in tPA -/-mice was reversed by microinjections of either exogenous tPA or plasmin into the NAcc. Our findings demonstrate a previously undescribed function of the tPA-plasmin system in regulating dopamine release, which is involved in the rewarding effects of morphine.
In response to genotoxic stress, which can be caused by environmental or endogenous genotoxic insults such as ionizing or ultraviolet radiation, various chemicals and reactive cellular metabolites, cell cycle checkpoints which slow down or arrest cell cycle progression can be activated, allowing the cell to repair or prevent the transmission of damaged or incompletely replicated chromosomes. Checkpoint machineries can also initiate pathways leading to apoptosis and the removal of a damaged cell from a tissue. The balance between cell cycle arrest and damage repair on one hand and the initiation of cell death, on the other hand, could determine if cellular or DNA damage is compatible with cell survival or requires cell elimination by apoptosis. Defects in these processes may lead to hypersensitivity to cellular stress, and susceptibility to DNA damage, genomic defects, and resistance to apoptosis, which characterize cancer cells. In this article, we have noted recent studies of DNA damage-dependent cell cycle checkpoints, which may be significant in preventing genomic instability.
In the central nervous system, tissue plasminogen activator (tPA) plays a role in synaptic plasticity and remodeling. Our recent study has suggested that tPA participates in the rewarding effects of morphine by regulating dopamine release. In this study, we investigated the role of tPA in methamphetamine (METH)-related reward and sensitization. Repeated METH treatment dose-dependently induced tPA mRNA expression in the frontal cortex, nucleus accumbens, striatum and hippocampus, whereas single METH treatment did not affect tPA mRNA expression in these brain areas. The METH-induced increase in tPA mRNA expression in the nucleus accumbens was completely inhibited by pre-treatment with R(+)-SCH23390 and raclopride, dopamine D1 and D2 receptor antagonists, respectively. In addition, repeated METH treatment increased tPA activity in the nucleus accumbens. There was no difference in METH-induced hyperlocomotion between wild-type and tPA-deficient (tPA-/-) mice. On the other hand, METH-induced conditioned place preference and behavioral sensitization after repeated METH treatment were significantly reduced in tPA-/-mice compared with wild-type mice. The defect of behavioral sensitization in tPA-/-mice was reversed by microinjections of exogenous tPA into the nucleus accumbens. Our findings suggest that tPA is involved in the rewarding effects as well as the sensitization of the locomotor-stimulating effect of METH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.