Several of the drugs currently available for the treatment of premature ejaculation (PE) (e.g., local anesthetics or antidepressants) are associated with numerous safety concerns and exhibit weak efficacy. To date, no therapeutics for PE have been approved in the United States, highlighting the need to develop novel agents with sufficient efficacy and fewer side effects. In this study, we focused on the histamine H3 receptor (H3R) as a potential target for the treatment of PE and evaluated the effects of imetit (an H3R/H4R agonist), ciproxifan (an H3R antagonist), and JNJ-7777120 (an H4R antagonist) in vivo. Our in vivo electrophysiological experiments revealed that imetit reduced mechanical stimuli-evoked neuronal firing in anesthetized rats. This effect was inhibited by ciproxifan but not by JNJ-7777120. Subsequently, we evaluated the effect of imetit using a copulatory behavior test to assess ejaculation latency (EL) in rats. Imetit prolonged EL, although this effect was inhibited by ciproxifan. These findings indicate that H3R stimulation suppresses mechanical stimuli-evoked neuronal firing in the spinal–penile neurotransmission system, thereby resulting in prolonged EL. To our knowledge, this is the first report to describe the relationship between H3R and PE. Thus, H3R agonists may represent a novel treatment option for PE.
Sexual dysfunction can be caused by impaired neurotransmission from the peripheral to the central nervous system. Therefore, it is important to evaluate the input of sensory information from the peripheral genital area and investigate the control mechanisms in the spinal cord to clarify the pathological basis of sensory abnormalities in the genital area. However, an in vivo evaluation system for the spinal cord–penile neurotransmission mechanism has not yet been developed. Here, urethane-anesthetized rats were used to evaluate neuronal firing induced by innocuous or nociceptive stimulation of the penis using extracellular recording or patch-clamp techniques in the lumbosacral spinal dorsal horn and electrophysiological evaluation in the peripheral pelvic nerves. As a result, innocuous and nociceptive stimuli-evoked neuronal firing was successfully recorded in the deep and superficial spinal dorsal horns, respectively. The innocuous stimuli-evoked nerve firing was also recorded in the pelvic nerve. These firings were suppressed by lidocaine. To the best of our knowledge, this is the first report of a successful quantitative evaluation of penile stimuli-evoked neuronal firing. This method is not only useful for analyzing the pathological basis of spinal cord–penile neurotransmission in sexual dysfunction but also provides a useful evaluation system in the search for new treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.