Microwave power transfer provides power wirelessly by converting electromagnetic waves emitted by an antenna to DC power using a rectifying antenna (rectenna). We are developing a distributed cooperative power transfer system that intentionally generates constructive interference on a device by applying appropriate phase control to microwaves emitted from each antenna to improve the efficiency of the power supply. This paper proposes a novel phase optimization method to find the optimal phase that maximizes the received power of the device. The proposed method obtains the optimal phase by performing nonlinear curve regression based on the received signal strength indication (RSSI) feedback of the device. Experimental evaluations showed that the proposed method improved the stability of the supplied power and reduced the time of phase optimization in both feedback models.
Recent years have witnessed a proliferation of battery-powered mobile devices, e.g., smartphones, tablets, sensors, and laptops, which leads a significant demand for high capacity wireless communication with high energy efficiency. Among technologies to provide the efficiency is full-duplex wireless communication. Full-duplex wireless enhances capacity by simultaneously transmitting uplink and downlink data with limited frequency resources. Previous studies on full-duplex wireless mostly focuses on doubling the network capacity, whereas in this paper we discuss that full-duplex wireless can also provide higher energy efficiency. We propose low power communication by wireless full-duplexing (LPFD), focusing on the fact that the full-duplex communication duration becomes half of the halfduplex communication duration. In the LPFD, by using the sleep state in which the transceiver provided in the wireless communication terminal is turned off, power consumption of the wireless communication terminal is reduced and energy efficiency in wireless full duplex is improved. Simulation results show that the energy efficiency achieved by LPFD is up to approximately 17.3 times higher than the energy efficiency achieved by existing full-duplex medium access protocol. Further, it is up to approximately 27.5 times higher than the energy efficiency using power saving mode of half-duplex communication.
Backscatter communication has attracted attention owing to its ultra-low-power consumption ability, which is expected to enhance internet of things (IoT) technology that aims to enable many novel applications for object-to-object communication. Such a network with a large and continuously increasing number of connected objects will benefit significantly from resource-saving. This work introduces a system named QuadScatter, which is a set of algorithms that select and associate transmitters, tags and readers to enable simultaneous backscatter transmissions and increase network capacity. Consequently, the energy consumption in the network is considerably lessened. Intensive simulations have been conducted to demonstrate the effectiveness of backscatter simultaneous transmissions. QuadScatter shows promising results compared to the exhaustive search algorithm. The simulation results highlight computational time and simultaneous transmission improvements of at least 250x and 2x, respectively. Furthermore, while the exhaustive search is limited to a few nodes (< 20), our proposal uses numerous nodes. Additionally, an implementation of limited simultaneous backscatter transmissions is conducted to show its feasibility in the real world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.