Polyglutamine disorders are inherited neurodegenerative diseases caused by the accumulation of expanded polyglutamine protein (polyQ). Previously, we identified a new guanosine triphosphatase, CRAG, which facilitates the degradation of polyQ aggregates through the ubiquitin-proteasome pathway in cultured cells. Because expression of CRAG decreases in the adult brain, a reduced level of CRAG could underlie the onset of polyglutamine diseases. To examine the potential of CRAG expression for treating polyglutamine diseases, we generated model mice expressing polyQ predominantly in Purkinje cells. The model mice showed poor dendritic arborization of Purkinje cells, a markedly atrophied cerebellum and severe ataxia. Lentivector-mediated expression of CRAG in Purkinje cells of model mice extensively cleared polyQ aggregates and re-activated dendritic differentiation, resulting in a striking rescue from ataxia. Our in vivo data substantiate previous cell-culturebased results and extend further the usefulness of targeted delivery of CRAG as a gene therapy for polyglutamine diseases.
Non-technical summary Homozygous staggerer mutant (sg/sg) mice exhibit cerebellar atrophy and congenital ataxia, and serve as an important extreme mouse model of the hereditary spinocerebellar ataxia type 1 (SCA1), since the staggerer mutation is closely related to SCA1 pathology. However, we know little about synaptic abnormalities at cerebellar parallel fibre (PF)-Purkinje cell (PC) synapses in sg/sg mice, which could underlie SCA1 pathology. In this study, we report that PFs still make reasonably functional fast synapses onto PCs in sg/sg mice despite reduction in the number of PF-PC synapses. In contrast, sg/sg mice lack metabotropic glutamate receptor (mGluR)-mediated slow synaptic transmission completely. Synaptic modulation caused by mGluR-mediated endocannabinoid release is also abolished at sg/sg PF-PC synapses. Our results indicate that major synaptic abnormality is disruption of cerebellar mGluR signalling in SCA1-related sg/sg mice, and that mGluR signalling can be one of the key factors to SCA1 pathology.Abstract Staggerer mutant mice have functional loss of a transcription factor, retinoid-related orphan receptor α (RORα), which is abundantly expressed in Purkinje cells (PCs) of the cerebellum. Homozygous staggerer (sg/sg) mice show cerebellar hypoplasia and congenital ataxia. Sg/sg mice serve as an important extreme mouse model of the hereditary spinocerebellar ataxia type 1 (SCA1), since it has been shown that RORα dysfunction is strongly correlated with SCA1 pathogenesis. However, synaptic abnormalities, especially at parallel fibre (PF)-PC synapses, in SCA1-related sg/sg mice have not been examined in detail electrophysiologically. In this study, we report that PFs can still establish functional synapses onto PCs in sg/sg mice in spite of reduction in the number of PF-PC synapses. Compared with PF-evoked EPSCs in the wild-type or heterozygotes, the success rate of the EPSC recordings in sg/sg was quite low (∼40%) and the EPSCs showed faster kinetics and slightly decreased paired pulse facilitation at short intervals. The prominent synaptic dysfunction is that sg/sg mice lack metabotropic glutamate receptor (mGluR)-mediated slow EPSCs completely. Neither intense PF stimulation nor an exogenously applied mGluR agonist, DHPG, could elicit mGluR-mediated responses. Western blot analysis in the sg/sg cerebellum revealed low-level expression of mGluR1 and TRPC3, both of which underlie mGluR-mediated slow currents in PCs. Immunohistochemical data demonstrated marked mislocalization of mGluR1 on sg/sg PCs. We found that mGluR-mediated retrograde suppression of PF-PC EPSCs by endocannabinoid is also impaired completely in sg/sg mice. These results suggest that disruption of mGluR signalling at PF-PC synapses is one of the major synaptic defects in sg/sg mice and may manifest itself in SCA1 pathology.
The delta2 glutamate receptor (GluRdelta2) is expressed predominantly in cerebellar Purkinje cells. GluRdelta2 knock-out mice show impaired synaptogenesis and loss of long-term depression (LTD) at parallel fiber/Purkinje cell synapses, and persistent multiple climbing fiber (CF) innervation of Purkinje cells, resulting in severe ataxia. To identify domains critical for GluRdelta2 function, we produced various GluRdelta2 deletion constructs. Using lentiviral vectors, those constructs were expressed in Purkinje cells of GluRdelta2-deficient mice at postnatal day (P) 6 or 7, and rescue of abnormal phenotypes was examined beyond P30. Most constructs failed to rescue the defects of GluRdelta2-deficient mice, mainly because they were not efficiently transferred to the postsynaptic sites. However, a construct carrying only the extracellular N-terminal domain (NTD) and the intracellular C-terminal domain (CTD) linked with the fourth transmembrane domain of GluRdelta2 (NTD-TM4-CTD) caused incomplete, but significant rescue of ataxia, consistent with relatively better transport of the construct to the synapses. Notably, the expression of NTD-TM4-CTD in GluRdelta2-deficient Purkinje cells restored abrogated LTD, and aberrant CF territory in the molecular layer. Although the expression of NTD-TM4-CTD failed to rescue persistent multiple CF innervation of GluRdelta2-deficient Purkinje cells, a similar construct in which only TM4 was replaced with a transmembrane domain of CD4 successfully rescued the multiple CF innervation, probably due to more efficient transport of the protein to postsynaptic sites. These results suggest that NTD and CTD are critical domains of GluRdelta2, which functions substantially without conventional ligand binding and ion channel structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.