The corrosion electric field around the surface of stainless steel under tensile stress is addressed through the experiment and simulation. When the stress is applied, the passive film is locally damaged on the grain boundaries causing microscopic stress and strain concentrations. In a corrosive environment, the plastic strain induced by the strain concentration breaks the passive film and generates a new surface without the passive film. This causes a galvanic corrosion between the intact surface with passive film and the damaged surface without passive film. The effect of stress on the polarization curve was observed by electrochemical and mechanical experiments, and we found that the spontaneous potential decreased as the applied stress increased. To evaluate the electrochemical property of stressed stainless steel, the electric field analysis is formulated by the boundary element method (BEM) with the damaged passive film model and the empirical polarization curve model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.