We present herein a linear expanded π-conjugation system comprising azulene units: 2,6':2',6″-terazulene. This simple hydrocarbon exhibits excellent n-type transistor performance with an electron mobility of up to 0.29 cm(2) V(-1) s(-1). The lowest unoccupied molecular orbital (LUMO) is well distributed over the entire molecule, whereas the highest occupied molecular orbital (HOMO) is localized at one end. These findings indicate a disadvantage of hole carrier transport and an advantage of n-type-specific transport behavior. This system presents an unconventional concept: polarity control of OFET by molecular orbital distribution control.
Intermolecular orbital coupling is fundamentally important to organic semiconductor performance. Recently, we reported that 2,6':2',6″-terazulene (TAz1) exhibited excellent performance as an n-type organic field-effect transistor (OFET) via molecular orbital distribution control. To validate and develop this concept, here we present three other terazulene regioisomers, which have three azulene molecules connected at the 2- or 6-position along the long axis of the azulene, thus constructing a linear expanded π-conjugation system: 2,2':6',2″-terazulene (TAz2), 2,2':6',6″-terazulene (TAz3), and 6,2':6',6″-terazulene (TAz4). TAz2 and TAz3 exhibit ambipolar characteristics; TAz4 exhibits clear n-type transistor behavior as an OFET. The lowest unoccupied molecular orbitals (LUMOs) of all terazulenes are fully delocalized over the entire molecule. In contrast, the highest occupied molecular orbitals (HOMOs) of TAz2 and TAz3 are delocalized over the 2,2'-biazulene units; the HOMOs of TAz4 are localized at one end of the azulene unit. These findings confirm that terazulene isomers which are simple hydrocarbon compounds are versatile materials with a tunable-polarity FET characteristic that depends on the direction of the azulene unit and the related contrast of the molecular orbital distribution in the terazulene backbone.
Recent research has revealed that nanobubbles (NBs) can be an effective tool for gene transfection in conjunction with therapeutic ultrasound (US). However, an approach to apply commercially available hand-held diagnostic US scanners for this purpose has not been evaluated as of now. In the present study, we first compared in vitro, the efficiency of gene transfer (pCMV-Luciferase) with lipid-based and albumin-based NBs irradiated by therapeutic US (1MHz, 5.0 W/cm 2) in oral squamous carcinoma cell line HSC-2. Secondly, we similarly examined if gene transfer in mice is possible using a clinical hand-held US scanner (2.3MHz, MI 1.0). Results showed that lipid-based NBs induced more gene transfection compared to albumin-based NBs, in vitro. Furthermore, significant gene transfer was also obtained in mice liver with lipid-based NBs. Sub-micro sized bubbles proved to be a powerful gene transfer reagent in combination with conventional hand-held ultrasonic diagnostic device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.