We report here "strain glass," a new glassy phenomenon in ferroelastic-martensitic system of Ni-rich intermetallic Ti(50-x)Ni(50+x) (x > 1), where local strain is frozen in disordered configuration below a critical temperature Tg. The ac elastic modulus shows a minimum at Tg, which exhibits logarithmic frequency dependence following Vogel-Fulcher relationship, and the corresponding internal friction shows a frequency-dependent peak located at a lower temperature. In situ high-resolution transmission electron microscopy observations reveal uncorrelated nanoclusters of martensiticlike phase, randomly frozen in the otherwise untransformed parentlike matrix. Being parallel to spin glass and relaxor, strain glass may shed new light on the fundamental physics of glass and lead to the discovery of novel properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.