Dosage compensation (DC) on the X Chromosome counteracts the deleterious effects of gene loss on the Y Chromosome. However, DC is not efficient if the X Chromosome also degenerates. This indeed occurs in Drosophila miranda, in which both the neo-Y and the neo-X are under accelerated pseudogenization. To examine the generality of this pattern, we investigated the evolution of two additional neo-sex chromosomes that emerged independently in D. albomicans and D. americana and reanalyzed neo-sex chromosome evolution in D. miranda. Comparative genomic and transcriptomic analyses revealed that the pseudogenization rate on the neo-X is also accelerated in D. albomicans and D. americana although to a lesser extent than in D. miranda. In males, neo-X-linked genes whose neo-Y-linked homologs are pseudogenized tended to be up-regulated more than those whose neo-Y-linked homologs remain functional. Moreover, genes under strong functional constraint and genes highly expressed in the testis tended to remain functional on the neo-X and neo-Y, respectively. Focusing on the D. miranda and D. albomicans neo-sex chromosomes that emerged independently from the same autosome, we further found that the same genes tend to become pseudogenized in parallel on the neo-Y. These genes include Idgf6 and JhI-26, which may be unnecessary or even harmful in males. Our results indicate that neo-sex chromosomes in Drosophila share a common evolutionary trajectory after their emergence, which may prevent sex chromosomes from being an evolutionary dead end.
The human hepatoma-derived HuH-7 cell line and its derivatives (Huh7.5 and Huh7.5.1) have been widely used as a convenient experimental substitute for primary hepatocytes. In particular, these cell lines represent host cells suitable for propagating the hepatitis C virus (HCV) in vitro. The Huh7.5.1-8 cell line, a subline of Huh7.5.1, can propagate HCV more efficiently than its parental cells. To provide genomic information for cells' quality control, we performed whole-genome sequencing of HuH-7 and Huh7.5.1-8 and identified their characteristic genomic deletions, some of which are applicable to an in-house test for cell authentication. Among the genes related to HCV infection and replication, 53 genes were found to carry missense or loss-of-function mutations likely specific to the HuH-7 and/or Huh7.5.1-8. Eight genes, including DDX58 (RIG-I), BAX, EP300, and SPP1 (osteopontin), contained mutations observed only in Huh7.5.1-8 or mutations with higher frequency in Huh7.5.1-8. These mutations might be relevant to phenotypic differences between the two cell lines and may also serve as genetic markers to distinguish Huh7.5.1-8 cells from the ancestral HuH-7 cells.
Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.