The metabolically active and perpetually remodeling calcium phosphate–based endoskeleton in terrestrial vertebrates sets the demands on whole-organism calcium and phosphate homeostasis that involves multiple organs in terms of mineral flux and endocrine cross talk. The fibroblast growth factor (FGF)-Klotho endocrine networks epitomize the complexity of systems biology, and specifically, the FGF23-αKlotho axis highlights the concept of the skeleton holding the master switch of homeostasis rather than a passive target organ as hitherto conceived. Other than serving as a coreceptor for FGF23, αKlotho circulates as an endocrine substance with a multitude of effects. This review covers recent data on the physiological regulation and function of the complex FGF23-αKlotho network. Chronic kidney disease is a common pathophysiological state in which FGF23-αKlotho, a multiorgan endocrine network, is deranged in a self-amplifying vortex resulting in organ dysfunction of the utmost severity that contributes to its morbidity and mortality.
Calciprotein particles (CPP) are solid-phase calcium-phosphate bound to serum protein fetuin-A and dispersed as colloids in the blood. Recent clinical studies indicated that serum CPP levels were increased with decline of renal function and associated with inflammation and vascular calcification. However, CPP assays used in these studies measured only a part of CPP over a certain particle size and density. Here we show that such CPP are mostly artifacts generated during processing of serum samples in vitro. The native CPP in fresh plasma are smaller in size and lower in density than those artifactual CPP, composed of fetuin-A carrying amorphous and/or crystalline calcium-phosphate, and increased primarily with serum phosphate levels. We have identified several physicochemical factors that promote aggregation/dissolution of CPP and transition of the calcium-phosphate from the amorphous phase to the crystalline phase in vitro, including addition of anti-coagulants, composition of buffer for sample dilution, the number of freeze-thaw cycles, the speed for sample freezing, and how many hours the samples were left at what temperature. Therefore, it is of critical importance to standardize these factors during sample preparation in clinical studies on CPP and to investigate the biological activity of the native CPP.
BackgroundKlotho is a single-pass transmembrane protein, which appears to be implicated in aging. The purpose of the present study was to characterize the relationship between the soluble Klotho level and renal function in patients with various degrees of chronic kidney disease (CKD).MethodsThe levels of soluble Klotho in the serum and urine obtained from one hundred thirty-one CKD patients were determined by a sandwich enzyme-linked immunosorbent assay system.ResultsThe amount of urinary excreted Klotho during the 24 hr period ranged from 1.6 to 5178 ng/day (median 427 ng/day; interquartile range [IR] 56.8-1293.1), and the serum Klotho concentration ranged from 163.9 to 2123.7 pg/ml (median 759.7 pg/ml; IR 579.5-1069.1). The estimated glomerular filtration rate (eGFR) was significantly correlated with the log-transformed values of the amount of 24 hr urinary excreted Klotho (r = 0.407, p < 0.01) and the serum Klotho levels (r = 0.232, p < 0.01). However, a stepwise multiple regression analysis identified eGFR to be a variable independently associated only with the log-transformed value of the amount of 24-hr urinary excreted Klotho but not with the log-transformed serum Klotho concentration. Despite the strong correlation between random urine protein-to-creatinine ratio and the 24 hr urinary protein excretion (r = 0.834, p < 0.01), a moderate linear association was observed between the log-transformed value of the amount of 24 hr urinary excreted Klotho and that of the urinary Klotho-to-creatinine ratio (Klotho/Cr) in random urine specimens (r = 0.726, p < 0.01).ConclusionsThe amount of urinary Klotho, rather than the serum Klotho levels, should be linked to the magnitude of the functioning nephrons in CKD patients. The use of random urine Klotho/Cr as a surrogate for the amount of 24-hr urinary excreted Klotho needs to be evaluated more carefully.
hosphorus homeostasis at the organismal level is maintained by balancing phosphate intake and excretion. Specifically, the amount of phosphate excreted into urine is regulated so as to become equal to the amount of phosphate absorbed from the digestive tract. 1 The amount of urinary phosphate excretion is primarily regulated by the endocrine axis consisting of fibroblast growth factor-23 (FGF23) and its obligate coreceptor klotho. FGF23 is a hormone secreted from osteoblasts and osteocytes in response to phosphate intake. FGF23 binds to the binary complex of FGF receptor and klotho expressed in renal tubules and suppresses phosphate reabsorption, thereby promoting urinary
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.