Despite the high incidence of neuropathic and inflammatory pain worldwide, effective drugs with few side effects are currently unavailable for the treatment of chronic pain. Recently, researchers have proposed that inhibitors of purinergic chemical transmission, which plays a key role in the pathological pain response, may allow for targeted treatment of pathological neuropathic and inflammatory pain. However, such therapeutic analgesic agents have yet to be developed. In the present study, we demonstrated that clodronate, a first-generation bisphosphonate with comparatively fewer side effects than traditional treatments, significantly attenuates neuropathic and inflammatory pain unrelated to bone abnormalities via inhibition of vesicular nucleotide transporter (VNUT), a key molecule for the initiation of purinergic chemical transmission. In vitro analyses indicated that clodronate inhibits VNUT at a halfmaximal inhibitory concentration of 15.6 nM without affecting other vesicular neurotransmitter transporters, acting as an allosteric modulator through competition with Cl − . A low concentration of clodronate impaired vesicular ATP release from neurons, microglia, and immune cells. In vivo analyses revealed that clodronate is more effective than other therapeutic agents in attenuating neuropathic and inflammatory pain, as well as the accompanying inflammation, in wild-type but not VNUT −/− mice, without affecting basal nociception. These findings indicate that clodronate may represent a unique treatment strategy for chronic neuropathic and inflammatory pain via inhibition of vesicular ATP release. vesicular nucleotide transporter | purinergic chemical transmission | analgesic effect | antiinflammatory effect | clodronate
Glucagon-like peptide-1 (GLP-1) receptor agonists are an effective treatment approach for type 2 diabetes. Recently, antiinflammatory effects of GLP-1 receptor agonists have also been reported. Lipopolysaccharide (LPS) induces inflammation and osteoclast formation. In this study, we investigated the effect of exendin-4, a widely used GLP-1 receptor agonist, in LPS-induced osteoclast formation and bone resorption. LPS with or without exendin-4 was administered on mouse calvariae by daily subcutaneous injection. The number of osteoclasts, the ratio of bone resorption pits, and the level of C-terminal cross-linked telopeptide of type I collagen (CTX) were significantly lower in LPS-and exendin-4-coadministered mice than in mice administered with LPS alone. RANKL and TNF-α mRNA expression levels were lower in the exendin-4-and LPScoadministered group than in the LPS-administered group. Our in vitro results showed no direct effects of exendin-4 on RANKL-induced osteoclast formation, TNF-α-induced osteoclast formation, or LPS-induced RANKL expression in stromal cells. Conversely, TNF-α mRNA expression was inhibited in the exendin-4-and LPS-cotreated macrophages compared with cells treated with LPS alone. These results indicate that the GLP-1 receptor agonist exendin-4 may inhibit LPS-induced osteoclast formation and bone resorption by inhibiting LPS-induced TNF-α production in macrophages.
C-X-C motif chemokine 12 (CXCL12) belongs to the family of CXC chemokines. Lipopolysaccharide (LPS) induces inflammation-induced osteoclastogenesis and bone resorption, and in recent years, stimulatory effects of CXCL12 on bone resorption have also been reported. In the present study, we investigated the effects of CXCL12 on LPS-induced osteoclastogenesis and bone resorption. LPS was administered with or without CXCL12 onto mouse calvariae by daily subcutaneous injection. Numbers of osteoclasts and bone resorption were significantly elevated in mice co-administered LPS and CXCL12 compared with mice administered LPS alone. Moreover, receptor activator of NF-kB ligand (RANKL) and tumor necrosis factor-α (TNF-α) mRNA levels were higher in mice co-administered LPS and CXCL12 compared with mice administered LPS alone. These in vitro results confirmed a direct stimulatory effect of CXCL12 on RANKL- and TNF-α-induced osteoclastogenesis. Furthermore, TNF-α and RANKL mRNA levels were elevated in macrophages and osteoblasts, respectively, co-treated in vitro with CXCL12 and LPS, in comparison with cells treated with LPS alone. Our results suggest that CXCL12 enhances LPS-induced osteoclastogenesis and bone resorption in vivo through a combination of increasing LPS-induced TNF-α production by macrophages, increasing RANKL production by osteoblasts, and direct enhancement of osteoclastogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.