BackgroundOlder patients account for the majority of patients with sepsis. The objective of this study was to determine if decreased skeletal muscle mass is associated with outcomes in elderly patients with sepsis.MethodsPatients (60 years and older) who were admitted to a tertiary medical center intensive care unit with a primary diagnosis of sepsis between January 2012 and February 2016 were included. Patients who had not undergone abdominal computed tomography on the day of admission, had cardiopulmonary arrest on arrival, or had iliopsoas abscess were excluded from the analyses. Cross-sectional muscle area at the 3rd lumber vertebra was quantified, and the relation to in-hospital mortality was analyzed. Multivariable logistic regression analysis that included sex and APACHE II score as explanatory variables was performed. The optimal cutoff value to define decreased muscle mass (sarcopenia) was calculated using receiver operating characteristic curve analysis, and the odds ratio for in-hospital mortality was determined.ResultsThere were 150 elderly patients with sepsis (median age, 75 years) enrolled; in-hospital mortality and median APACHE II score were 38.7 and 24%, respectively. The skeletal muscle area of deceased patients was significantly lower than that of the survival group (P < 0.001). The multivariable logistic regression analysis demonstrated that decreased muscle mass was significantly associated with increased mortality (odds ratio = 0.94, 95% confidence interval = 0.90 to 0.97, P < 0.001). The optimal cutoff value of skeletal muscle area to predict in-hospital mortality was 45.2 cm2 for men and 39.0 cm2 for women. With these cutoff values, the adjusted odds ratio for decreased muscle area was 3.27 (95% CI, 1.61 to 6.63, P = 0.001).ConclusionsLess skeletal muscle mass is associated with higher in-hospital mortality in elderly patients with sepsis. The results of this study suggest that identifying patients with low muscularity contributes to better stratification in this population.
The optimal timing of tracheostomy in patients with traumatic brain injury (TBI) remains unclear. The purpose of this study was to examine the effects of tracheostomy performed within 72 h after admission. In this retrospective cohort study, the authors reviewed the data for a series of 120 consecutive patients who underwent tracheostomy after suffering TBI with an Abbreviated Injury Scale (AIS) score of ≥4. The exclusion criteria were as follows: age <18 years, severe chest injury with an AIS score of ≥4, and a requirement for intubation because of upper airway obstruction. Patients who underwent tracheostomy ≤72 h and >72 h after admission were classified into early group and control groups, respectively. The duration of mechanical ventilation, length of stay (LOS) in intensive care unit (ICU), incidence of pneumonia, adverse event rate, unnecessary tracheostomy and outcomes were compared between the two groups. Of the 120 patients, 29 were excluded from the study, 40 were classified into the early group, and 51 were classified into the control group. The duration of mechanical ventilation and LOS in ICU were significantly less in the early group than in the control group. The 30-day mortality rates were 3% and 8% for the early and control groups, respectively. There was no significant difference in the adverse event rate, incidence of pneumonia, unnecessary tracheostomy rate and the rate of favorable outcome between groups. The results of this study suggest that the performance of tracheostomy within 72 h of admission may decrease the duration of mechanical ventilation and LOS in ICU, with acceptable mortality and morbidity rates.
Background The prevalence of extracorporeal cardiopulmonary resuscitation (ECPR) in patients with out-of-hospital cardiac arrest (OHCA) has been increasing rapidly worldwide. However, guidelines or clinical studies do not provide sufficient data on ECPR practice. The aim of this study was to provide real-world data on ECPR for patients with OHCA, including details of complications. Methods We did a retrospective database analysis of observational multicenter cohort study in Japan. Adult patients with OHCA of presumed cardiac etiology who received ECPR between 2013 and 2018 were included. The primary outcome was favorable neurological outcome at hospital discharge, defined as a cerebral performance category of 1 or 2. Results A total of 1644 patients with OHCA were included in this study. The patient age was 18–93 years (median: 60 years). Shockable rhythm in the initial cardiac rhythm at the scene was 69.4%. The median estimated low flow time was 55 min (interquartile range: 45–66 min). Favorable neurological outcome at hospital discharge was observed in 14.1% of patients, and the rate of survival to hospital discharge was 27.2%. The proportions of favorable neurological outcome at hospital discharge in terms of shockable rhythm, pulseless electrical activity, and asystole were 16.7%, 9.2%, and 3.9%, respectively. Complications were observed during ECPR in 32.7% of patients, and the most common complication was bleeding, with the rates of cannulation site bleeding and other types of hemorrhage at 16.4% and 8.5%, respectively. Conclusions In this large cohort, data on the ECPR of 1644 patients with OHCA show that the proportion of favorable neurological outcomes at hospital discharge was 14.1%, survival rate at hospital discharge was 27.2%, and complications were observed during ECPR in 32.7%.
The patients in whom the comminuted radial head fracture was treated with open reduction and internal fixation had satisfactory joint motion, with greater strength and better function than the patients who had undergone radial head resection. These results support a recommendation for open reduction and internal fixation in the treatment of this fracture.
BackgroundWe investigated the relationship between neurological outcomes and duration from cardiac arrest (CA) to the initiation of extracorporeal membrane oxygenation (ECMO) (CA-to-ECMO) in patients with out-of-hospital cardiac arrest (OHCA) treated with extracorporeal cardiopulmonary resuscitation (ECPR) and determined the ideal time at which ECPR should be performed.MethodsDuring the time period in which this study was conducted, 3451 patients experienced OHCA. This study finally included 79 patients aged 18 years or older whose OHCA had been witnessed and who underwent ECPR in the emergency room between January 2011 and December 2015. Our primary endpoint was survival to hospital discharge with good neurological outcomes (a cerebral performance category of 1 or 2).ResultsOf the 79 patients included, 11 had good neurological outcomes. The median duration from CA-to-ECMO was significantly shorter in the good neurological outcome group (33 min, interquartile range [IQR], 27–50 vs. 46 min, IQR, 42–56: p = 0.03). After controlling for potential confounders, we found that the adjusted odds ratio of CA-to-ECMO time for a good neurological outcome was 0.92 (95% confidence interval: 0.87–0.98, p = 0.007). The area under the receiver operating characteristic curve of CA-to-ECMO for predicting a good neurological outcome was 0.71, and the optimal CA-to-ECMO cutoff time was 40 min. The dynamic probability of survival with good neurological outcomes based on CA-to-ECMO time showed that the survival rate with good neurological outcome decreased abruptly from over 30% to approximately 15% when the CA-to-ECMO time exceeded 40 min.DiscussionIn this study, CA-to-ECMO time was significantly shorter among patients with good neurological outcomes, and significantly associated with good neurological outcomes at hospital discharge. In addition, the probability of survival with good neurological outcome decreased when the CA-to-ECMO time exceeded 40 minutes. The indication for ECPR for patients with OHCA should include several factors. However, the duration of CPR before the initiation of ECMO is a key factor and an independent factor for good neurological outcomes in patients with OHCA treated with ECPR. Therefore, the upper limit of CA-to-ECMO time should be inevitably included in the indication for ECPR for patients with OHCA. In the present study, there was a large difference in the rate of survival to hospital discharge with good neurological outcome between the patients with a CA-to-ECMO time within 40 minutes and those whose time was over 40 minutes. Based on the present study, the time limit of the duration of CPR before the initiation of ECMO might be around 40 minutes. We should consider ECPR in patients with OHCA if they are relatively young, have a witness and no terminal disease, and the initiation of ECMO is presumed to be within this time period.ConclusionsThe duration from CA-to-ECMO was significantly associated with good neurological outcomes. The indication for patients with OHCA should include a criterion for the ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.