The generation of new blood vessels via angiogenesis is critical for meeting tissue oxygen demands. A role for adult stem cells in this process remains unclear. Here, we identified CD157 (bst1, bone marrow stromal antigen 1) as a marker of tissue-resident vascular endothelial stem cells (VESCs) in large arteries and veins of numerous mouse organs. Single CD157 VESCs form colonies in vitro and generate donor-derived portal vein, sinusoids, and central vein endothelial cells upon transplantation in the liver. In response to injury, VESCs expand and regenerate entire vasculature structures, supporting the existence of an endothelial hierarchy within blood vessels. Genetic lineage tracing revealed that VESCs maintain large vessels and sinusoids in the normal liver for more than a year, and transplantation of VESCs rescued bleeding phenotypes in a mouse model of hemophilia. Our findings show that tissue-resident VESCs display self-renewal capacity and that vascular regeneration potential exists in peripheral blood vessels.
Anti-angiogenic therapy is a potential chemotherapeutic strategy for the treatment of drug resistant cancers. However, a method for delivering such drugs to tumor endothelial cells remains to be a major impediment to the success of anti-angiogenesis therapy. We designed
Angiogenesis plays a crucial role in tumor growth, with an undisputed contribution of resident endothelial cells (EC) to new blood vessels in the tumor. Here, we report the definition of a small population of vascular-resident stem/progenitor-like EC that contributes predominantly to new blood vessel formation in the tumor. Although the surface markers of this population are similar to other ECs, those from the lung vasculature possess colony-forming ability in vitro and contribute to angiogenesis in vivo. These specific ECs actively proliferate in lung tumors, and the percentage of this population significantly increases in the tumor vasculature relative to normal lung tissue. Using genetic recombination and bone marrow transplant models, we show that these cells are phenotypically true ECs and do not originate from hematopoietic cells. After treatment of tumors with antiangiogenic drugs, these specific ECs selectively survived and remained in the tumor. Together, our results established that ECs in the peripheral vasculature are heterogeneous and that stem/progenitor-like ECs play an indispensable role in tumor angiogenesis as EC-supplying cells. The lack of susceptibility of these ECs to antiangiogenic drugs may account for resistance of the tumor to this drug type. Thus, inhibiting these ECs might provide a promising strategy to overcome antiangiogenic drug resistance.
Antiangiogenic agents transiently normalize tumor vessel structure and improve vessel function, thereby providing a window of opportunity for enhancing the efficacy of chemotherapy or radiotherapy. Currently, there are no reliable predictors or markers reflecting this vessel normalization window during antiangiogenic therapy. Apelin, the expression of which is regulated by hypoxia, and which has well‐described roles in tumor progression, is an easily measured secreted protein. Here, we show that apelin can be used as a marker for the vessel normalization window during antiangiogenic therapy. Mice bearing s.c. tumors resulting from inoculation of the colon adenocarcinoma cell line HT29 were treated with a single injection of bevacizumab, a mAb neutralizing vascular endothelial growth factor. Tumor growth, vessel density, pericyte coverage, tumor hypoxia, and small molecule delivery were determined at four different times after treatment with bevacizumab (days 1, 3, 5, and 8). Tumor growth and vessel density were significantly reduced after bevacizumab treatment, which also significantly increased tumor vessel maturity, and improved tumor hypoxia and small molecule delivery between days 3 and 5. These effects abated by day 8, suggesting that a time window for vessel normalization was opened between days 3 and 5 during bevacizumab treatment in this model. Apelin mRNA expression and plasma apelin levels decreased transiently at day 5 post‐treatment, coinciding with vessel normalization. Thus, apelin is a potential indicator of the vessel normalization window during antiangiogenic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.