The parameters for HN chemical shift calculations of proteins have been determined using data from high-resolution crystal structures of 15 proteins. Employing these chemical shift calculations for HN protons, the observed secondary structure chemical shift trends of HN protons, i.e., upfield shifts on helix formation and downfield shifts on β-sheet formation, are discussed. Our calculations suggest that the main reason for the difference in NH chemical shifts in helices and sheets is not an effect from the directly hydrogen-bonded carbonyl, which gives rise to downfield shifts in both cases, but arises from an additional upfield shift predicted in helices and originating in residues i-2 and i-3. The calculations also explain the well-known relationship between amide proton shifts and hydrogen-bond lengths. In addition, the HN chemical shifts of the distorted amphipathic helices of the GCN4 leucine zipper are calculated and used to characterise the solution structure of the helices. By comparing the calculated and experimental shifts, it is shown that in general the agreement is good between residues 15 and 28. The most interesting observation is that in the N-terminal half of the zipper, although both calculated and experimental shifts show clear periodicity, they are no longer in phase. This suggests that for the N-terminal half, in the true average solution structure the period of the helix coil is longer by roughly one residue compared to the NMR structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.