Tobacco smoking is an important risk factor for the development of severe periodontitis. Recently, we showed that nicotine affected mineralized nodule formation, and that nicotine and lipopolysaccharide stimulated the formation of osteoclast-like cells by increasing production of macrophage colony-stimulating factor (M-CSF) and prostaglandin E2 (PGE2) by human osteoblastic Saos-2 cells. In the present study, we examined the effects of nicotine on the expression of matrix metalloproteinases (MMPs), tissue inhibitors of matrix metalloproteinases (TIMPs), the plasminogen activation system including the component of tissue-type plasminogen activator (tPA), urokinase-type PA (uPA), and PA inhibitor type 1 (PAI-1), alpha7 nicotine receptor, and c-fos. We also examined the effect of the nicotine antagonist D-tubocurarine on nicotine-induced expression of MMP-1. Gene expression was examined using real-time polymerase chain reaction (PCR) to estimate mRNA levels. In addition, expression of the MMP, TIMP, uPA, tPA, and PAI-1 proteins was determined by Western blotting analysis. Nicotine treatment caused expression of MMP-1, 2, 3, and 13, but not MMP-14, to increase significantly after 5 or 10 d of culture; MMP-14 expression did not change through day 14. Enhancement of MMP-1 expression by nicotine treatment was eliminated by simultaneous treatment with D-tubocurarine. In the presence of nicotine, expression of uPA, PAI-1, or TIMP-1, 2, 3, or 4 did not change over 14 d of culture, whereas expression of tPA increased significantly by day 7. Nicotine also increased expression of the alpha7 nicotine receptor and c-fos genes. These results suggest that nicotine stimulates bone matrix turnover by increasing production of tPA and MMP-1, 2, 3, and 13, thereby tipping the balance between bone matrix formation and resorption toward the latter process.
The association between obesity and inflammation is well documented in epidemiological studies. Proteolysis of extracellular matrix (ECM) proteins is involved in adipose tissue enlargement, and matrix metalloproteinases (MMPs) collectively cleave all ECM proteins. Here, we examined the effects of C-reactive protein (CRP), an inflammatory biomarker, on the expression of MMPs and tissue inhibitors of metalloproteinases (TIMPs), which are natural inhibitors of MMPs, in adipocyte-differentiated 3T3-L1 cells. We analyzed the expression of Fcγ receptor (FcγR) IIb and FcγRIII, which are candidates for CRP receptors, and the effects of anti-CD16/CD32 antibodies, which can act as FcγRII and FcγRIII blockers on CRP-induced alteration of MMP and TIMP expression. Moreover, we examined the effects of CRP on the activation of mitogen-activated protein kinase (MAPK) signaling, which is involved in MMP and TIMP expression, in the presence or absence of anti-CD16/CD32 antibodies. Stimulation with CRP increased MMP-1, MMP-3, MMP-9, MMP-11, MMP-14, and TIMP-1 expression but did not affect MMP-2, TIMP-2, and TIMP-4 expression; TIMP-3 expression was not detected. Adipocyte-differentiated 3T3-L1cells expressed FcγRIIb and FcγRIII; this expression was upregulated on stimulation with CRP. Anti-CD16/CD32 antibodies inhibited CRP-induced expression of MMPs, except MMP-11, and TIMP-1. CRP induced the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and p38 MAPK but did not affect SAPK/JNK phosphorylation, and Anti-CD16/CD32 attenuated the CRP-induced phosphorylation of p38 MAPK, but not that of ERK1/2. These results suggest that CRP facilitates ECM turnover in adipose tissue by increasing the production of multiple MMPs and TIMP-1 in adipocytes. Moreover, FcγRIIb and FcγRIII are involved in the CRP-induced expression of MMPs and TIMP-1 and the CRP-induced phosphorylation of p38, whereas the FcγR-independent pathway may regulate the CRP-induced MMP-11 expression and the CRP-induced ERK1/2 phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.