In this study, the concept of novel recycling system using waste Al and Fe is described. Taking advantage of the fact that due to its cyclic usage, aluminum scrap unavoidably contains iron and steel wastes, an in-situ Al-Al 3 Fe functionally graded material (FGM) is planned to be fabricated. A centrifugal method is applied to a model master alloy, Al-10 mass% Fe, obtained from virgin materials, the content of which is decided from the liquidus temperature. The resulting product is a thick-walled tube having a graded distribution of second phase particles in the Al matrix. It has been established that the shape of the particles varies depending on their position along the radial direction. The second phase is confirmed to be a stable Al 3 Fe intermetallic compound. Thin plates of Al-Al 3 Fe having homogeneously distributed Al 3 Fe particles, considering both the composition gradient and the particle morphology, were machined from the thick-walled Al-Al 3 Fe FGM tube and their mechanical properties measured. Based on the experimental observations, the potential and the advantages of the Al-Al 3 Fe alloy as a recyclable eco-FGM are discussed.
Near net shape forming of Al-Al3Fe functionally graded materials (FGMs) have been studied. FGM billets fabricated by a centrifugal method were extruded under the condition of a mixture of molten Al eutectic and solid Al3Fe particles. Both distribution and profile of Al3Fe particles were characterized by and the variation of volume fraction of Al3Fe particles was observed. Shore hardness of the Al matrix was also measured to evaluate the strength of the FGM before and after the semi-solid forming associated with the character of distributed Al3Fe particles. It was
confirmed that Shore hardness increased with increasing the volume fraction of Al3Fe particles and after the semi-solid forming than before. This was due to the fact that Al3Fe particles after the semi-solid forming became fine by shear stress introduced by liquid Al flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.