The magnetic anisotropy of monatomic Fe films on Pd(001) with or without a Pd overlayer was investigated from the standpoint of interface atomic structures. Quantitative analysis included low-energy electron diffraction and x-ray magnetic circular dichroism (XMCD) experiments, and first-principles calculations were also performed on monatomic Fe and Pd/Fe systems. It was revealed that Fe atoms intermix with the Pd substrate at room temperature. A spin reorientation transition occurs at a critical Fe thickness of 1.2 monolayers (ML) in Fe/Pd(001), while in-plane magnetic anisotropy is persistent in Pd/Fe/Pd(001) throughout the entire sample. The Fe 3d spin and orbital magnetic moments for both systems are strongly enhanced near 1 ML Fe thickness, as compared to those of the bulk iron crystal. In addition, an induced magnetic moment in interfacial Pd atoms was observed by XMCD at the Pd M 2,3 core absorption edges. It was concluded that the L1 0 -like tetragonally distorted interface atomic structure in monatomic Fe/Pd(001) induces the perpendicular magnetic anisotropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.