The occurrence of new events in a system is typically driven by external causes and by previous events taking place inside the system. This is a general statement, applying to a range of situations including, more recently, to the activity of users in Online social networks (OSNs). Here we develop a method for extracting from a series of posting times the relative contributions of exogenous, e.g. news media, and endogenous, e.g. information cascade. The method is based on the fitting of a generalized linear model (GLM) equipped with a self-excitation mechanism. We test the method with synthetic data generated by a nonlinear Hawkes process, and apply it to a real time series of tweets with a given hashtag. In the empirical dataset, the estimated contributions of exogenous and endogenous volumes are close to the amounts of original tweets and retweets respectively. We conclude by discussing the possible applications of the method, for instance in online marketing.
The Syrian armed conflict has been ongoing since 2011 and has already caused thousands of deaths. The analysis of death tolls helps to understand the dynamics of the conflict and to better allocate resources and aid to the affected areas. In this article, we use information on the daily number of deaths to study temporal and spatial correlations in the data, and exploit this information to forecast events of deaths. We found that the number of violent deaths per day in Syria varies more widely than that in England in which non-violent deaths dominate. We have identified strong positive auto-correlations in Syrian cities and non-trivial cross-correlations across some of them. The results indicate synchronization in the number of deaths at different times and locations, suggesting respectively that local attacks are followed by more attacks at subsequent days and that coordinated attacks may also take place across different locations. Thus the analysis of high temporal resolution data across multiple cities makes it possible to infer attack strategies, warn potential occurrence of future events, and hopefully avoid further deaths.
This paper proposes the PSS Business Case Map as a tool to support designers’ idea generation in PSS design. The map visualizes the similarities among PSS business cases in a two-dimensional diagram. To make the map, PSS business cases are first collected by conducting, for example, a literature survey. The collected business cases are then classified from multiple aspects that characterize each case such as its product type, service type, target customer, and so on. Based on the results of this classification, the similarities among the cases are calculated and visualized by using the Self-Organizing Map (SOM) technique. A SOM is a type of artificial neural network that is trained using unsupervised learning to produce a low-dimensional (typically two-dimensional) view from high-dimensional data. The visualization result is offered to designers in a form of a two-dimensional map, which is called the PSS Business Case Map. By using the map, designers can figure out the position of their current business and can acquire ideas for the servitization of their business.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.