Illumination of light on matter normally causes heating and destroys the ordered ground states. Despite this common understanding, recent advances in ultrafast light sources have enabled the non-thermal control of quantum phases. Here, we report the light-induced enhancement of superconductivity in a thin film of an iron chalcogenide FeSe0.5Te0.5, which exhibits multiple quantum condensates associated with the multi-orbital character. Upon the photoexcitation, we observed a transient increase of the superfluid density as indicated by the optical conductivity in the frequency range of superconducting gaps. The light-induced enhancement of superconductivity is further corroborated by the photoinduced enhancement of terahertz third harmonic generation, which is accounted for by the Higgs mode response. The ultrafast dynamics of two superfluid components revealed by frequency- and time-resolved terahertz measurements indicate the interplay between the condensates through the interband Cooper pairings while suggesting the potential tunability of the pairing interaction by light in the ultrafast timescale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.