This paper considers a retrial queueing model where a group of guard channels is reserved for priority and retrial customers. Priority and normal customers arrive at the system according to two distinct Poisson processes. Priority customers are accepted if there is an idle channel upon arrival while normal customers are accepted if and only if the number of idle channels is larger than the number of guard channels. Blocked customers (priority or normal) join a virtual orbit and repeat their attempts in a later time. Customers from the orbit (retrial customers) are accepted if there is an idle channel available upon arrival. We formulate the queueing system using a level dependent quasi-birth-and-death (QBD) process. We obtain a Taylor series expansion for the nonzero elements of the rate matrices of the level dependent QBD process. Using the expansion results, we obtain an asymptotic upper bound for the joint stationary distribution of the number of busy channels and that of customers in the orbit. Furthermore, we develop an efficient numerical algorithm to calculate the joint stationary distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.