Forming effective coalition is a central research challenge in AI and multi-agent systems. The Coalition Structure Generation (CSG) problem is well-known as one of major research topics in coalitional games. The CSG problem is to partition a set of agents into coalitions so that the sum of utilities is maximized. This paper studies a CSG problem for partition function games (PFGs), where the value of a coalition differs depending on the formation of other coalitions generated by non-member agents. Traditionally, in PFGs, the input of a coalitional game is a black-box function called a partition function that maps an embedded coalition (a coalition and the coalition structure) to its value. Recently, a novel concise representation scheme called the Partition Decision Trees (PDTs) has been proposed. The PDTs is a graphical representation based on multiple rules. In this paper, we propose new algorithms that can solve a CSG problem by utilizing PDTs representation. More specifically, we modify PDTs representation to effectively handle negative value rules and apply the depth-first branch and bound algorithm. We experimentally show that our algorithm can solve a CSG problem well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.