A cascaded second order adaptive notch filter using an allpass filter has been proposed. A gradient based algorithm for the adaptive notch filters are used. However, the performance of the adaptive notch filter is decreased due to disturbance which inputs into a tap input signal. In this paper, in order to solve the problem, an adaptive line enhancer which reduces the disturbance in a reference signal is introduced to the adaptive notch filter. Finally, computer simulation results are presented to confirm the convergence characteristics.
Cedar and cypress used for wooden construction have high moisture content after harvesting. To be used as building materials, they must undergo high-temperature drying. However, this process causes internal cracks that are invisible on the outer surface. These defects are serious because they reduce the strength of the timber, i.e., the buckling strength and joint durability. Therefore, the severity of internal cracks should be evaluated. A square timber was cut at an arbitrary position and assessed based on the length, thickness, and shape of the cracks in the cross-section; however, this process is time-consuming and labor-intensive. Therefore, we used a convolutional neural network (CNN) to automatically evaluate the severity of cracks from cross-sectional timber images. Previously, we used silver-painted images of cross-sections so that the cracks are easier to observe; however, this task was burdensome. Hence, in this study, we attempted to classify crack severity using ResNet (Residual Neural Network) from unpainted images. First, ResNet50 was employed and trained with supervised data to classify the crack severity level. The classification accuracy was then evaluated using test images (not used for training) and reached 86.67%. In conclusion, we confirmed that the proposed CNN could evaluate cross-sectional cracks on behalf of humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.