Thawing of ice-rich permafrost and subsequent ground subsidence can form characteristic landforms, and the resulting topography they create is collectively called "thermokarst." The impact of wildfire on thermokarst development remains uncertain. Here, we report on the post-wildfire ground deformation associated with the 2014 wildfire near Batagay, Eastern Siberia. We used Interferometric Synthetic Aperture Radar (InSAR) to generate both long-term (1-4 years) and short-term (subseasonal to seasonal) deformation maps. Based on two independent satellite-based microwave sensors, we could validate the dominance of vertical displacements and their heterogeneous distributions without relying on in situ data. The inferred time series based on L-band ALOS2 InSAR data indicated that the cumulative subsidence at the area of greatest magnitude was greater than 30 cm from October 2015 to June 2019 and that the rate of subsidence slowed in 2018. The burn severity was rather homogeneous, but the cumulative subsidence magnitude was larger on the east-facing slopes where the gullies were also predominantly developed. The correlation suggests that the active layer on the east-facing slopes might have been thinner before the fire. Meanwhile, C-band Sentinel-1 InSAR data with higher temporal resolution showed that the temporal evolution included episodic changes in terms of deformation rate. Moreover, we could unambiguously detect frost heave signals that were enhanced within the burned area during the early freezing season but were absent in the midwinter. We could reasonably interpret the frost heave signals within a framework of premelting theory instead of assuming a simple freezing and subsequent volume expansion of preexisting pore water. Plain Language Summary Wildfires in arctic regions show not only an immediate impact on nearby residents but also long-lasting effects on both regional ecosystems and landforms of the burned area via permafrost degradation and subsequent surface deformation. However, the observations of post-wildfire ground deformations have been limited. Using satellite-based imaging technique called Interferometric Synthetic Aperture Radar (InSAR), we detected the detailed spatial-temporal evolution of post-wildfire surface deformation in Eastern Siberia, which helps in understanding permafrost degradation processes over remote areas. Post-wildfire areas are likely to be focal points of permafrost degradation in the Arctic that can last many years.
Recent increases in global temperature have stimulated permafrost degradation associated with landform deformation caused by the melting of excess ground ice (thermokarst). Central Yakutia is underlain by ice-rich continuous permafrost, and there are complicated permafrost-related features in forested and deforested areas. This situation makes thermokarst monitoring necessary over a wide area to achieve a better understanding of its dynamics. As a case study, we applied L-band InSAR analysis to map surface subsidence due to thermokarst in this area and to demonstrate the suitability of L-band SAR for such monitoring. Our results show that InSAR detected subsidence/uplift signals in deforested areas and alasses; whereas, there were few ground deformation signals in forested areas with middle coherence. The InSAR stacking process, including both seasonal and inter-annual displacements, showed subsidence in deforested areas during 2007–2010 and 2015–2018, in the range of 0.5–3 cm yr−1. We also estimated the inter-annual subsidence to be up to 2 cm yr−1 during 2015–2018, using InSAR pairs that spanned the same seasonal interval but in different years. The magnitude of subsidence and the spatial patterns are qualitatively reasonable as thermokarst subsidence compared to observations using field surveys and high-resolution optical images. L-band InSAR was effective in maintaining coherence over a long period for a partially forested thermokarst-affected area, which resulted in deriving the inter-annual subsidence by the stacking using four interferograms. The advantage of the persistent coherence in L-band InSAR is crucial to better understand thermokarst processes in permafrost regions.
Wildfires in Arctic regions impact landforms via permafrost degradation and subsequent deformation that can last for many years. However, it remains uncertain on if and how much deformations occur, and what controls their magnitude, particularly during the first couple of years. Here, we examine the transient post‐fire deformation responses near the Batagaika megaslump, which is the world's largest retrogressive thaw slump at Batagay, Sakha Republic. There were wildfires in the summers of 2018 and 2019 on the same slope, which could trigger the formation of another megaslump; many fires occurred nearby in 2019. We use interferometric synthetic aperture radar (InSAR) to measure surface displacements, including both post‐fire and span‐fire images. We also perform onsite measurements of temperature and thaw depth around the two scars near Batagaika megaslump in 2019, 2020, and 2021 and around the 2014 scar in 2019. At the three fire scars formed in 2018 and 2019, we demonstrate year‐to‐year and location‐specific changes in the amplitude of subsidence, heave, and duration. The 2018 scar shows cumulative subsidences of up to 10 cm by March 2021, more clearly than the nearby 2019 scar. On the other hand, another 2019 scar adjacent to the 2014 scar shows up to 13 cm net subsidence during the first span‐fire year, although the subsiding area is limited. These diverse transient post‐fire responses demonstrate that under the yedoma area the spatial heterogeneities of the active layer depth and the timing of fires will control subsequent thermokarst processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.