Cholangiocarcinoma (CCA) is a cancer arising from the neoplastic transformation of cholangiocytes. During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Zebularine (1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one) acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. In this study, we explore the effect and possible mechanism of action of zebularine on CCA cells. We demonstrate that zebularine exerts an antitumor effect on CCA cells. Zebularine treatment decreased the concentrations of DNA methyltransferase (DNMT) proteins, and DNMT1 knockdown led to apoptotic cell death in the CCA cell lines TFK-1 and HuCCT1. DNA methylation analysis demonstrated that zebularine induced DNA demethylation, and the GO Biological Process terms “hemophilic cell adhesion”, “regulation of transcription, DNA-dependent” and “Wnt signaling pathway” were found to be significantly enriched in association with demethylated genes. Furthermore, we observed that zebularine treatment decreased β-catenin protein levels in TFK-1 and HuCCT1 cells. These results suggest that zebularine alters DNA methylation status, and that some aspect of DNA demethylation by zebularine induces suppression of the Wnt signaling pathway, which leads to apoptotic cell death in CCA. We previously reported a novel mechanism of zebularine-induced cell growth arrest and apoptosis in hepatocellular carcinoma via a DNA methylation-independent pathway. Together, our present and previous studies indicate that zebularine could function as both a DNMT inhibitor and a non-DNMT inhibitor reagent, and that, while the optimal usage of zebularine may depend on cancer type, zebularine may be useful for chemotherapy against cancer.
-The Nanoculture plate (NCP) is a recently developed plate which essentially consists of a textured surface with specific characteristics that induce spheroid formation: microfabrications with a micro-square pattern on the culture surface. The NCP can be used to generate uniform adhesive spheroids of cancer cell lines using conventional techniques without the need of any animal compounds. In this study, we assessed the performance of human hepatoma cell line HepG2 cells cultured with an NCP to evaluate the effects of the NCP on their hepatocyte-specific functions. The NCP facilitated the formation of three-dimensional (3D) HepG2 cell architecture. HepG2 cells cultured with an NCP exhibited enhanced mRNA expression levels of albumin and cytochrome P450 (CYP) enzymes compared to those cultured with a two-dimensional (2D) conventional plate. The expression levels of two specific liver-enriched transcription factors, hepatocyte nuclear factor 4α (HNF4α) and CCAAT/enhancer binding protein α (C/EBPα), were higher in HepG2 cells grown with the NCP than those in HepG2 cells grown with conventional plates before albumin and CYP enzymes expression levels were increased. The inducibility of CYP1A2 and CYP3A4 mRNA following exposure to inducers in HepG2 cells cultured with an NCP was comparable to that in HepG2 cells cultured with conventional plates, while the expression levels of CYP1A2 and CYP3A4 mRNA following exposure to inducers were higher when using an NCP than when using conventional plates. These results suggest that the use of an NCP enhances the hepatocyte-specific functions of HepG2 cells, such as drug-metabolizing enzyme expression, making the NCP/ HepG2 system a useful tool for evaluating drug metabolism in vitro.
Hepatocellular carcinoma is one of the most common cancers worldwide. During tumorigenesis, tumor suppressor and cancer-related genes are commonly silenced by aberrant DNA methylation in their promoter regions. Zebularine (1-(β-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one) acts as an inhibitor of DNA methylation and exhibits chemical stability and minimal cytotoxicity both in vitro and in vivo. In this study, we explore the effect and possible mechanism of action of zebularine on hepatocellular carcinoma cell line HepG2. We demonstrate that zebularine exhibits antitumor activity on HepG2 cells by inhibiting cell proliferation and inducing apoptosis, however, it has little effect on DNA methylation in HepG2 cells. On the other hand, zebularine treatment downregulated CDK2 and the phosphorylation of retinoblastoma protein (Rb), and upregulated p21WAF/CIP1 and p53. We also found that zebularine treatment upregulated the phosphorylation of p44/42 mitogen-activated protein kinase (MAPK). These results suggest that the p44/42 MAPK pathway plays a role in zebularine-induced cell-cycle arrest by regulating the activity of p21WAF/CIP1 and Rb. Furthermore, although the proapoptotic protein Bax levels were not affected, the antiapoptotic protein Bcl-2 level was downregulated with zebularine treatment. In addition, the data in the present study indicate that inhibition of the double-stranded RNA-dependent protein kinase (PKR) is involved in inducing apoptosis with zebularine. These results suggest a novel mechanism of zebularine-induced cell growth arrest and apoptosis via a DNA methylation-independent pathway in hepatocellular carcinoma.
The sorting nexins (SNXs) are a family of proteins functioning in diverse processes, including endocytosis, endosomal sorting, and endosomal signaling. Sorting nexin 12 (SNX12) is one of the SNXs family members; however, its function remains unknown. To clarify the function of SNX12, in this study, we first investigated the expression profiles in mice, particularly in the central nervous system (CNS), and then analyzed the functional role on neurite outgrowth. We found that SNX12 was widely expressed in the adult mouse CNS and that its expression level was higher in the cerebral cortex than in other examined regions. SNX12 expression was detected in the neurons but not the glial cells of the adult mouse cerebral cortex. In the fetal brain, SNX12 expression increased during the embryonic stage and gradually decreased after birth. Although the immunoreactivities of SNX12 were widespread in the cerebral cortical cells in the fetal brain, the immunopositive signals of SNX12 were more intense in the postmitotic neurons in the cortical plate than in the proliferating precursor cells in the ventricular zone, suggesting that SNX12 plays critical roles in the postmitotic neurons during cerebral cortical development. Furthermore, in mouse neuroblastoma and N1E-115 cells and rat primary cortical neurons, SNX12 expression was increased as neurite outgrowth progressed and the knockdown of SNX12 attenuated the outgrowth of neurites. These results suggest that SNX12 regulates neurite formation during cerebral cortical development.
Drug-induced hepatotoxicity is one of the major reasons cited for drug withdrawal. Therefore, it is of extreme importance to detect human hepatotoxic candidates as early as possible during the drug development process. In this study, we aimed to enhance hepatocyte functions such as CYP gene expression in HepG2 cells, one of the most extensively used cell lines in evaluating hepatotoxicity of chemicals and drugs. We found that zebularine, a potent inhibitor of DNA methylation, remarkably upregulates the expression of CYP genes in HepG2 cells. In addition, we revealed that the upregulation of CYP gene expression by zebularine was mediated through the inhibition of both DNA methyltransferase 1 (DNMT1) and double-stranded RNA-dependent protein kinase (PKR). Furthermore, HepG2 cells treated with zebularine were more sensitive than control cells to drug toxicity. Taken together, our results show that zebularine may make HepG2 cells high-functioning and thus could be useful for evaluating the hepatotoxicity of chemicals and drugs speedily and accurately in in-vitro systems. The finding that zebularine upregulates CYP gene expression through DNMT1 and PKR modulation sheds light on the mechanisms controlling hepatocyte function and thus may aid in the development of new in-vitro systems using high-functioning hepatocytes.The liver is essential for maintaining normal physiology and homeostasis of the body. Among its multiple critical roles, the metabolism of chemicals, toxins and drugs by hepatocytes is especially important. Abnormality in homeostasis is often associated with hepatotoxicity 1 . Therefore, a simple and rapid method of assaying a substance's potential for liver damage is needed to predict the toxicity and adverse effects of chemicals for pathophysiological and toxicological purposes 2 . Many preliminary hepatotoxicity studies have been carried out using in-vivo and/or in-vitro animal models, but we should not rely too heavily on such models because of species differences, animal protection concerns and model accuracy issues. Thus more reliable and more practical human in-vitro cell culture models are needed to improve the effectiveness with which we can evaluate the human hepatotoxicity of substances as well as reduce the number of animals used during each drug's development process. In-vitro models using human cells derived from the liver, such as primary hepatocytes and hepatoma cell lines, are preferred 3 . Various sources of hepatic tissue, including whole or partial livers from organ donors or cadavers and resected liver tissue from therapeutic hepatectomies or small surgical biopsies, have been used to generate human hepatocyte cultures4 . Yet hepatocytes originating from these sources sometimes exhibit lower cell viability in culture because they come from diseased livers (e.g., cirrhotic livers) or are damaged during the handling process. Furthermore, it is difficult to guarantee a ready supply of freshly isolated human hepatocytes, and primary human hepatocytes are known to rapidly lose cellular fu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.